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PREFACE

This solution manual is prepared to aid the instructor in discussing the solutions
to assigned problems in Chapters 1 through 14 from the book, An Introduction to
the Finite Element Method, Third Edition, McGraw—Hill, New York, 2006. Computer
solutions to certain problems of Chapter 8 (see Chapter 13 problems) are also included
at the end of Chapter 8.
The instructor should make an effort to review the problems before assigning them.

This allows the instructor to make comments and suggestions on the approach to be
taken and nature of the answers expected. The instructor may wish to generate
additional problems from those given in this book, especially when taught time
and again from the same book. Suggestions for new problems are also included
at pertinent places in this manual. Additional examples and problems can be found
in the following books of the author:

1. J. N. Reddy and M. L. Rasmussen, Advanced Engineering Analysis, John Wiley, New York, 1982;
reprinted and marketed currently by Krieger Publishing Company, Melbourne, Florida, 1990 (see
Section 3.6).

2. J. N. Reddy, Energy and Variational Methods in Applied Mechanics, John Wiley, New York, 1984
(see Chapters 2 and 3).

3. J. N. Reddy, Applied Functional Analysis and Variational Methods in Engineering, McGraw-Hill,
New York, 1986; reprinted and marketed currently by Krieger Publishing Company, Melbourne,
Florida, 1991 (see Chapters 4, 6 and 7).

4. J. N. Reddy, Theory and Analysis of Elastic Plates, Taylor and Francis, Philadelphia, 1997.

5. J. N. Reddy, Energy Principles and Variational Methods in Applied Mechanics, Second Edition,
John Wiley, New York, 2002 (see Chapters 4 through 7 and Chapter 10).

6. J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC
Press, Second Edition, Boca Raton, FL, 2004.

7. J. N. Reddy, An Introduction to Nonlinear Finite Element Analysis, Oxford University Press,
Oxford, UK, 2004.

The computer problems FEM1D and FEM2D can be readily modified to solve
new types of field problems. The programs can be easily extended to finite element
models formulated in an advanced course and/or in research. The Fortran sources of
FEM1D and FEM2D are available from the author for a price of $200.

The author appreciates receiving comments on the book and a list of errors found
in the book and this solutions manual.

J. N. Reddy

All that is not given is lost.
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Chapter 1

INTRODUCTION

Problem 1.1: Newton’s second law can be expressed as

F = ma (1)

where F is the net force acting on the body, m mass of the body, and a the
acceleration of the body in the direction of the net force. Use Eq. (1) to determine
the mathematical model, i.e., governing equation of a free-falling body. Consider
only the forces due to gravity and the air resistance. Assume that the air resistance
is linearly proportional to the velocity of the falling body.

Solution: From the free-body-diagram it follows that

m
dv

dt
= Fg − Fd, Fg = mg, Fd = cv

where v is the downward velocity (m/s) of the body, Fg is the downward force (N or
kg m/s2) due to gravity, Fd is the upward drag force, m is the mass (kg) of the body,
g the acceleration (m/s2) due to gravity, and c is the proportionality constant (drag
coefficient, kg/s). The equation of motion is

dv

dt
+ αv = g, α =

c

m
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2 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

Problem 1.2: A cylindrical storage tank of diameter D contains a liquid at depth
(or head) h(x, t). Liquid is supplied to the tank at a rate of qi (m

3/day) and drained
at a rate of q0 (m

3/day). Use the principle of conservation of mass to arrive at the
governing equation of the flow problem.

Solution: The conservation of mass requires

time rate of change in mass = mass inflow - mass outflow

The above equation for the problem at hand becomes

d

dt
(ρAh) = ρqi − ρq0 or

d(Ah)

dt
= qi − q0

where A is the area of cross section of the tank (A = πD2/4) and ρ is the mass density
of the liquid.

Problem 1.3: Consider the simple pendulum of Example 1.3.1. Write a computer
program to numerically solve the nonlinear equation (1.2.3) using the Euler method.
Tabulate the numerical results for two different time steps ∆t = 0.05 and ∆t = 0.025
along with the exact linear solution.

Solution: In order to use the finite difference scheme of Eq. (1.3.3), we rewrite
(1.2.3) as a pair of first-order equations

dθ

dt
= v,

dv

dt
= −λ2 sin θ

Applying the scheme of Eq. (1.3.3) to the two equations at hand, we obtain

θi+1 = θi +∆t vi; vi+1 = vi −∆t λ2 sin θi

The above equations can be programmed to solve for (θi, vi). Table P1.3 contains
representative numerical results.

Problem 1.4: An improvement of Euler’s method is provided by Heun’s method,
which uses the average of the derivatives at the two ends of the interval to estimate
the slope. Applied to the equation

du

dt
= f(t, u) (1)

Heun’s scheme has the form

ui+1 = ui +
∆t

2

h
f(ti, ui) + f(ti+1, u

0
i+1)

i
, u0i+1 = ui +∆t f(ti, ui) (2)

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.



SOLUTIONS MANUAL 3

Table P1.3: Comparison of various approximate solutions of the equation
(d2θ/dt2) + λ2 sin θ = 0 with its exact linear solution.

Exact Approx. solution θ Exact Approx. solution v

t θ ∆t = .05 ∆t = .025 v ∆t = .05 ∆t = .025

0.00 0.78540 0.78540 0.78540 -0.00000 -0.00000 -0.00000
0.05 0.76965 0.78540 0.77828 -0.62801 -0.56922 -0.56922
0.10 0.72302 0.75694 0.74276 -1.23083 -1.13844 -1.13027
0.15 0.64739 0.70002 0.67944 -1.78428 -1.69123 -1.66622
0.20 0.54578 0.58980 0.56482 -2.26615 -2.20984 -2.15879
0.25 0.42229 0.50496 0.47627 -2.65711 -2.67459 -2.58816
0.30 0.28185 0.37123 0.34225 -2.94148 -3.06403 -2.93371
0.35 0.13011 0.21803 0.19218 -3.10785 -3.35605 -3.17573
0.40 -0.02685 0.05023 0.03148 -3.14955 -3.53018 -3.29791
0.45 -0.18274 -0.12628 -0.13374 -3.06491 -3.57060 -3.29007
0.50 -0.33129 -0.30481 -0.29690 -2.85732 -3.46921 -3.15014
0.60 -0.58310 -0.63965 -0.59131 -2.11119 -2.85712 -2.50787
0.80 -0.78356 -1.05068 -0.91171 0.21536 -0.50399 -0.28356
1.00 -0.50591 -0.94062 -0.74672 2.41051 2.29398 2.19765

In books on numerical analysis, the second equation in (2) is called the predictor
equation and the first equation is called the corrector equation. Apply Heun’s method
to Eqs. (1.3.4) and obtain the numerical solution for ∆t = 0.05.

Solution: Heun’s method applied to the pair

dθ

dt
= v,

dv

dt
= −λ2 sin θ

yields the following discrete equations:

θ0i+1 = θi +∆t vi

vi+1 = vi − λ2
∆t

2

³
sin θi + sin θ

0
i+1

´
θi+1 = θi +

∆t

2
(vi + vi+1)

The numereical results obtained with the Heun’s method and Euler’s method are
presented in Table P1.4.
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4 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

Table P1.4: Numerical solutions of the nonlinear equation d2θ/dt2 + λ2 sin θ = 0
along with the exact solution of the linear equation d2θ/dt2+λ2θ = 0.

Exact Approx. solution θ Exact Approx. solution v

t θ Euler’s Heun’s v Euler’s Heun’s

0.00 0.785398 0.785398 0.785398 -0.000000 -0.000000 -0.000000
0.05 0.769645 0.785398 0.771168 -0.628013 -0.569221 -0.569221
0.10 0.723017 0.756937 0.728680 -1.230833 -1.138442 -1.121957
0.20 0.545784 0.615453 0.564818 -2.266146 -2.209838 -1.121957
0.40 -0.026852 0.050228 0.015246 -3.149552 -3.530178 -3.073095
0.60 -0.583104 -0.639652 -0.544352 -2.111190 -2.857121 -2.194398
0.80 -0.783562 -1.050679 -0.787095 0.215362 -0.503993 -0.114453
1.00 -0.505912 -0.940622 -0.587339 2.410506 2.293983 2.023807

PROPRIETARY AND CONFIDENTIAL

This Manual is the proprietary property of The McGraw-Hill Companies, Inc. (“McGraw-Hill”)
and protected by copyright and other state and federal laws. By opening and using this Manual the
user agrees to the following restrictions, and if the recipient does not agree to these restrictions, the
Manual should be promptly returned unopened to McGraw-Hill: This Manual is being provided
only to authorized professors and instructors for use in preparing for the classes using
the affiliated textbook. No other use or distribution of this Manual is permitted. This
Manual may not be sold and may not be distributed to or used by any student or other
third party. No part of this Manual may be reproduced, displayed or distributed in any
form or by any means, electronic or otherwise, without the prior written permission of
the McGraw-Hill.
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SOLUTIONS MANUAL 5

Chapter 2

MATHEMATICAL PRELIMINARIES,

INTEGRAL FORMULATIONS, AND

VARIATIONAL METHODS

In Problem 2.1—2.5, construct the weak form and, whenever possible, quadratic
functionals.

Problem 2.1: A nonlinear equation:

− d
dx

µ
u
du

dx

¶
+ f = 0 for 0 < x < L

µ
u
du

dx

¶ ¯̄̄̄
x=0

= 0 u(1) =
√
2

Solution: Following the three-step procedure, we write the weak form:

0 =

Z 1

0
v

∙
− d
dx
(u
du

dx
) + f

¸
dx (1)

=

Z 1

0

∙
u
dv

dx

du

dx
+ vf

¸
dx−

∙
v(u

du

dx
)

¸1
0

(2)

Using the boundary conditions, v(1) = 0 (because u is specified at x = 1) and
(du/dx) = 0 at x = 0, we obtain

0 =

Z 1

0

∙
u
dv

dx

du

dx
+ vf

¸
dx (3)

For this problem, the weak form does not contain an expression that is linear in both
u and v; the expression is linear in v but not linear in u. Therefore, a quadratic
functional does not exist for this case. The expressions for B(·, ·) and `(·) are given
by

B(v, u) =

Z 1

0
u
dv

dx

du

dx
dx (not linear in u and not symmetric in u and v)

`(v) = −
Z 1

0
vfdx (4)

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.



6 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

♠ New Problem 2.1:

The instructor may assign the following problem:

− d
dx

∙
(1 + 2x2)

du

dx

¸
+ u = x2 (1a)

u(0) = 1 ,

µ
du

dx

¶
x=1

= 2 (1b)

The answer is

B(v, u) =

Z 1

0

∙
(1 + 2x2)

dv

dx

du

dx
+ vu

¸
dx (symmetric)

`(v) =

Z 1

0
v x2 dx+ 6v(1) (2)

I(u) =
1

2
B(u, u)− `(u) = 1

2

Z 1

0

"
(1 + 2x2)

µ
du

dx

¶2
+ u2

#
dx

−
Z 1

0
u x2 dx− 6u(1)

Problem 2.2: The Euler-Bernoulli-von Kármán nonlinear beam theory [7]:

− d
dx

(
EA

"
du

dx
+
1

2

µ
dw

dx

¶2#)
= f for 0 < x < L

d2

dx2

Ã
EI
d2w

dx2

!
− d

dx

(
EA

dw

dx

"
du

dx
+
1

2

µ
dw

dx

¶2#)
= q

u = w = 0 at x = 0, L;

µ
dw

dx

¶ ¯̄̄̄
x=0

= 0;

Ã
EI
d2w

dx2

! ¯̄̄̄
x=L

=M0

where EA, EI, f , and q are functions of x, andM0 is a constant. Here u denotes the
axial displacement and w the transverse deflection of the beam.

Solution: The first step of the formulation is to multiply each equation with a weight
function, say v1 for the first equation and v2 for the second equation, and integrate
over the interval (0, L). In the second step, carry out the integration-by-parts once
in the first equation, twice in the first term of the second equation, and once in the
second part of the second equation. Then use the fact that v1(0) = v1(L) = 0 (because
u is specified there), v2(0) = v2(L) = 0 (because w is specified), and (dv2/dx)(0) = 0

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.
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(because dw/dx is specified at x = 0). In addition, we have EI(d2w/dx2) = M0 at
x = L. The final weak forms are given by

0 =

Z L

0

(
EA

dv1
dx

"
du

dx
+
1

2

µ
dw

dx

¶2#
− v1f

)
dx (1a)

0 =

Z L

0

(
EI
d2v2
dx2

d2w

dx2
+EA

dv2
dx

dw

dx

"
du

dx
+
1

2

µ
dw

dx

¶2#
− v2q

)
dx

−
µ
dv2
dx

¶ ¯̄̄̄
¯
L

M0 (1b)

Note that for this case the weak form is not linear in u or w. However, a functional
can be constructed for this using the potential operator theory (see: J. T. Oden and
J. N. Reddy, Variational Methods in Theoretical Mechanics, 2nd ed., Springer-Verlag,
Berlin, 1983 and Reddy [3]). The functional is given by

Π(u,w) =

Z L

0

(
EA

2

"µ
du

dx

¶2
+
du

dx

µ
dw

dx

¶2
+
1

2

µ
dw

dx

¶4#
+
EI

2

Ã
d2w

dx2

!2

+ uf +wq

)
dx− dw

dx

¯̄̄̄
¯
L

M0

Problem 2.3: A second-order equation:

− ∂

∂x

µ
a11

∂u

∂x
+ a12

∂u

∂y

¶
− ∂

∂y

µ
a21

∂u

∂x
+ a22

∂u

∂y

¶
+ f = 0 in Ω

u = u0 on Γ1,

µ
a11

∂u

∂x
+ a12

∂u

∂y

¶
nx +

µ
a21

∂u

∂x
+ a22

∂u

∂y

¶
ny = t0 on Γ2

where aij = aji (i, j = 1, 2) and f are given functions of position (x, y) in a two-
dimensional domain Ω, and u0 and t0 are known functions on portions Γ1 and Γ2 of
the boundary Γ: Γ1 + Γ2 = Γ.

Solution: Multiplying with the weight function v and integrating by parts, we obtain
the weak

0 =

Z
Ω

∙
∂v

∂x

µ
a11

∂u

∂x
+ a12

∂u

∂y

¶
+

∂v

∂y

µ
a21

∂u

∂x
+ a22

∂u

∂y

¶
+ vf

¸
dxdy

−
I
Γ
v

∙µ
a11

∂u

∂x
+ a12

∂u

∂y

¶
nx +

µ
a21

∂u

∂x
+ a22

∂u

∂y

¶
ny

¸
ds

=

Z
Ω

∙
∂v

∂x

µ
a11

∂u

∂x
+ a12

∂u

∂y

¶
+

∂v

∂y

µ
a21

∂u

∂x
+ a22

∂u

∂y

¶
+ vf

¸
dxdy

−
Z
Γ2
vt0 ds

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.



8 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

where v = 0 on Γ1. The bilinear form (symmetric only if a12 = a21) and linear form
are:

B(v, u) =

Z
Ω

µ
a11

∂v

∂x

∂u

∂x
+ a12

∂v

∂x

∂u

∂y
+ a21

∂v

∂y

∂u

∂x
+ a22

∂v

∂y

∂u

∂y

¶
dxdy

`(v) = −
Z
Ω
vf dxdy +

Z
Γ2
v t0 ds

The quadratic functional, when a12 = a21, is given by

I(u) =
1

2

Z
Ω

"
a11

µ
∂u

∂x

¶2
+ 2a12

∂u

∂x

∂u

∂y
+ a22

µ
∂u

∂y

¶2#
dxdy

−
Z
Ω
uf dxdy +

Z
Γ2
u t0 ds

Problem 2.4: Navier-Stokes equations for two-dimensional flow of viscous,
incompressible fluids:

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+ ν

Ã
∂2u

∂x2
+

∂2u

∂y2

!

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂P

∂y
+ ν

Ã
∂2v

∂x2
+

∂2v

∂y2

!
∂u

∂x
+

∂v

∂y
= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
in Ω (1)

u = u0, v = v0 on Γ1 (2)

ν

µ
∂u

∂x
nx +

∂u

∂y
ny

¶
− 1

ρ
Pnx = t̂x

ν

µ
∂v

∂x
nx +

∂v

∂y
ny

¶
− 1

ρ
Pny = t̂y

)
on Γ2 (3)

Solution: For this set of three differential equations in two dimensions (see Chapter
10 and Reddy [7] for the physics behind the equations), we follow exactly the same
procedure as before: use the three-step procedure for each equation. In the second
step of the formulation, we must integrate by parts the terms involving P , u, and
v, because these terms are required as a part of the natural boundary conditions
given in Eq. (3). We do not integrate by parts the nonlinear terms in the first two
equations, and no integration by parts is used in the third equation, because the
boundary terms resulting from such integration-by-parts do not constitute physical

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.
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variables. We have

0 =

Z
Ω

∙
w1

µ
u
∂u

∂x
+ v

∂u

∂y

¶
− 1

ρ

∂w1
∂x

P + ν

µ
∂w1
∂x

∂u

∂x
+

∂w1
∂y

∂u

∂y

¶¸
dxdy

−
Z
Γ2
w1t̂xds

0 =

Z
Ω

∙
w2

µ
u
∂v

∂x
+ v

∂v

∂y

¶
− 1

ρ

∂w2
∂y

P + ν

µ
∂w2
∂x

∂v

∂x
+

∂w2
∂y

∂v

∂y

¶¸
dxdy

−
Z
Γ2
w2t̂yds

0 =

Z
Ω
w3

µ
∂u

∂x
+

∂v

∂y

¶
dxdy

where (w1, w2, w3) are weight functions.

Problem 2.5: Two-dimensional flow of viscous, incompressible fluids (stream
function-vorticity formulation):

−∇2ψ − ζ = 0

−∇2ζ + ∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x
= 0

⎫⎪⎬⎪⎭ in Ω

Assume that all essential boundary conditions are specified to be zero.

Solution: First, we note the the identity

−w∇2ψ = −w∇ ·∇ψ = −∇ · (w∇ψ) +∇w ·∇ψ

and then use the Green—Gauss theorem to obtain

−
Z
Ω
w∇2ψ dxdy =

Z
Ω
[−∇ · (w∇ψ) +∇w ·∇ψ] dxdy

= −
I
Γ
wn̂ ·∇ψ ds+

Z
Ω
∇w ·∇ψ dxdy

Multiplying the first equation with w1 and the second equation with w2 and
integrating over the domain Ω and using the above identity we obtain (the boundary
integrals vanish because w1 = 0 and w2 = 0 on the boundary Γ)

0 =

Z
Ω
(∇w1 ·∇ψ − w1ζ) dxdy (1)

0 =

Z
Ω

∙
∇w2 ·∇ζ + w2

µ
∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x

¶¸
dxdy (2)

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.



10 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

Problem 2.6: Compute the coefficient matrix and the right-hand side of the N -
parameter Ritz approximation of the equation

− d
dx

∙
(1 + x)

du

dx

¸
= 0 for 0 < x < 1

u(0) = 0, u(1) = 1

Use algebraic polynomials for the approximation functions. Specialize your result for
N = 2 and compute the Ritz coefficients.

Solution: The weak form for this problem is given by

0 =

Z 1

0
(1 + x)

dv

dx

du

dx
dx

The variational problem is given by Eqs. (2.5.4a) and (2.5.4b), where [`(φi) = 0
because there is no source term],

Bij = B(φi,φj) =

Z 1

0
(1 + x)

dφi
dx

dφj
dx
dx (1a)

Fi = −B(φi,φ0) = −
Z 1

0
(1 + x)

dφi
dx

dφ0
dx
dx (1b)

The approximation functions φ0 and φi should be chosen such that

φ0(0) = 0, φ0(1) = 1 ; φi(0) = φi(1) = 0, (i = 1, 2, ..., n) (2)

The following algebraic polynomials satisfy the above requirements:

φ0 = x , φi = x
i(1− x) (3)

Substitution of Eq.(3) into Eqs.(1a,b) and evaluating the integrals, we obtain

Bij =
ij

i+ j − 1 −
ij + i+ j

i+ j
+

1− ij
i+ j + 1

+
(i+ 1)(j + 1)

i+ j + 2
(4a)

Fi =
1

(1 + i)(2 + i)
(4b)

For the two-parameter (N = 2) case, we have

B11 =
1

2
, B12 = B21 =

17

60
, B22 =

7

30
, F1 =

1

6
, F2 =

1

12

and the parameters c1 and c2 are given by

c1 =
55

131
, c2 = −

20

131

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.



SOLUTIONS MANUAL 11

The two-parameter Ritz solution becomes

u(x) = φ0 + c1φ1 + c2φ2

= x+
55

131
(x− x2)− 20

131
(x2 − x3)

=
1

131
(186x− 75x2 + 20x3)

The exact solution is given by

uexact =
log (1 + x)

log 2

Problem 2.7: Use trigonometric functions for the two-parameter approximation of
the equation in Problem 2.6, and obtain the Ritz coefficients.

Solution: The following trigonometric functions satisfy the requirements in Eq.(2)
of Problem 2.6:

φ0 = sin
πx

2
, φi = sin iπx

For two-parameter case, we have

B11 =

Z 1

0
(1 + x)

dφ1
dx

dφ1
dx

dx = π2
Z 1

0
(1 + x) cosπx cosπx dx

B12 =

Z 1

0
(1 + x)

dφ1
dx

dφ2
dx

dx = 2π2
Z 1

0
(1 + x) cosπx cos 2πx dx = B21

B22 =

Z 1

0
(1 + x)

dφ2
dx

dφ2
dx

dx = 4π2
Z 1

0
(1 + x) cos 2πx cos 2πx dx

F1 = −
Z 1

0
(1 + x)

dφ1
dx

dφ0
dx

dx = −π
2

2

Z 1

0
(1 + x) cosπx cos

πx

2
dx

F2 = −
Z 1

0
(1 + x)

dφ2
dx

dφ0
dx

dx = −π2
Z 1

0
(1 + x) cos 2πx cos

πx

2
dx

Using the following trigonometric identities,

cosmπx cosnπx =
1

2
[cos(m+ n)πx+ cos(m− n)πx]

cos2mπx =
1

2
(1 + cos 2mπx)

we obtain "
3π2

4 −209
−209 3π2

#½
c1
c2

¾
=

½−19(6π − 10)
68
225 +

4π
15

¾
PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.



12 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

and the solution is

U2(x) = c1 sinπx+ c2 sin 2πx+ sin
πx

2

= −0.12407 sinπx+ 0.02919 sin 2πx+ sin πx
2

Problem 2.8 A steel rod of diameter d = 2 cm, length L = 25 cm, and thermal
conductivity k = 50 W/(m ◦C) is exposed to ambient air T∞ = 20◦C with a
heat-transfer coefficient β = 64 W/(m2 ◦C). Given that the left end of the rod is
maintained at a temperature of T0 = 120◦C and the other end is exposed to the
ambient temperature, determine the temperature distribution in the rod using a
two-parameter Ritz approximation with polynomial approximation functions. The
equation governing the problem is given by

−d
2θ

dx2
+ cθ = 0 for 0 < x < 25 cm

where θ = T − T∞, T is the temperature, and c is given by

c =
βP

Ak
=

βπD
1
4πD

2k
=
4β

kD
= 256 m2

P being the perimeter and A the cross sectional area of the rod. The boundary
conditions are

θ(0) = T (0)− T∞ = 100◦C,
µ
k
dθ

dx
+ βθ

¶ ¯̄̄̄
x=L

= 0

Solution: The weak form of the equation is given by

0 =

Z L

0

µ
dv

dx

dθ

dx
+ cvθ

¶
dx+ ĉv(L)θ(L) (1)

where ĉ = (βk ). We have

Bij = B(φi,φj) =

Z L

0

µ
dφi
dx

dφj
dx

+ cφiφj

¶
dx+ ĉφi(L)φj(L) (2a)

Fi = −B(φi,φ0) = −
Z L

0

µ
dφi
dx

dφ0
dx

+ cφiφ0

¶
dx− ĉφi(L)φ0(L) (2b)

We choose the following functions

φ0 = θ(0) = 100 , φi = x
i
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From the values of the parameters given, we compute: L = 0.25m, c = 256, and
ĉ = (βk ) = 64/50. The coefficients are evaluated to be

B11 =
499

300
, B12 = B21 =

133

400
, B22 =

91

1200
, F1 = −832 , F2 = −

424

3

or ⎡⎣ 499
300

133
400

133
400

91
1200

⎤⎦⎧⎨⎩
c1

c2

⎫⎬⎭ =
⎧⎨⎩
−832

−4243

⎫⎬⎭
The solution of these equations is

c1 = −1, 033.3859 , c2 = 2, 667.2635

The two-parameter Ritz solution is given by

θ(x) = 100− 1033.3859x+ 2667.2635x2

θ(0.125) = 12.503◦C , θ(0.25) = 8.3575◦C

Problem 2.9: Set up the equations for the N-parameter Ritz approximation of
the following equations associated with a simply supported beam and subjected to a
uniform transverse load q = q0:

d2

dx2

Ã
EI
d2w

dx2

!
= q0 for 0 < x < L

w = EI
d2w

dx2
= 0 at x = 0, L

(a) Use algebraic polynomials.

(b) Use trigonometric functions.

Compare the two-parameter Ritz solutions with the exact solution.

Solution: (a) Choose φ0 = 0 and φi = xi(L − x), which satisfy the geometric
conditions w(0) = w(L) = 0. The coefficients are given by

Bij = EI ij(L)
i+j−1

∙
(i− 1)(j − 1)
i+ j − 3 − 2(ij − 1)

i+ j − 2 +
(i+ 1)(j + 1)

i+ j − 1

¸
Fi =

q0(L)
i+2

(1 + i)(2 + i)

Note that the expression given above for Bij is not valid when i = 1 and j =
1, 2, · · · , N ; we have,

B11 = 4EIL, B1j = Bj1 = 2EIL
j , (j > 1)
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14 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

For N = 1 the Ritz coefficient is given by c1 = F1/B11 = q0L
2/24EI; and for N = 2,

the coefficients are: c1 = q0L
2/(24EI) , c2 = 0. Hence, the one-parameter and

two-parameter solution is the same

W1 =W2(x) = c1φ1 =
q0L

2

24EI
x(L− x) = q0L

4

24EI

x

L
(1− x

L
)

(b) Choose φ0 = 0 and φi = sin
iπx
L . The coefficients are given by

Bij =
EIL

2

µ
iπ

L

¶4
for i = j ; Bij = 0 for i 6= j

Fi =
2q0L

iπ
if i is odd ; Fi = 0 if i is even

Hence,

ci =
Fi
Bii

=
4q0
EIL

µ
L

iπ

¶5
=
4q0L

4

EI

µ
1

iπ

¶5
Hence, the solution becomes

w2(x) = c1φ1 + c3φ3 =
4q0L

4

EIπ5
sin

πx

L
+

4q0L
4

243EIπ5
sin
3πx

L

Problem 2.10: Repeat Problem 2.9 for q = q0 sin(πx/L).

Solution: (a) We have (a = π/L),

Fi =

Z L

0
(q0 sin ax) x

i(L− x) dx

= q0L

"
Li

a
+
i

a

Z L

0
xi−1 cos ax dx

#

− q0
"
−L

i+1

a
+
i+ 1

a

Z L

0
xi cos ax dx

#

For N = 1 we have F1 = 4q0L
3/π3, and c1 = q0L

2/(EIπ3). For N = 2 the coefficients
are F2 = F1L = 4q0L

3/π3 and the solution is c1 = c2L = 2q0L
2/(3EIπ3).

(b) Choose φ0 = 0 and φi = sin
iπx
L . The coefficients Bij are the same as in Problem

2.9(b). The coefficients Fi are given by F1 = f0L/2 and Fi = 0 for i 6= 1. The Ritz
coefficients are given by

c1 =
q0L

4

EIπ4
, ci = 0 if i 6= 1
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The Ritz solution coincides with the exact solution,

w =
q0L

4

EIπ4
sin

πx

L

Problem 2.11: Repeat Problem 2.9 for q = Q0δ(x − 1
2L), where δ(x) is the Dirac

delta function (i.e., a point load Q0 is applied at the center of the beam).

Solution: The coefficients Fi are given by

(a) Fi = Q0

µ
L

2

¶i+1
(b) Fi = Q0(−1)i−1 for i odd, and Fi = 0 for i even

Note that c2 = 0 in both cases.

Problem 2.12: Develop the N -parameter Ritz solution for a simply supported
beam under uniform transverse load using Timoshenko beam theory. The governing
equations are given in Eqs. (2.4.32a, b). Use Trigonometric functions to approximate
w and Ψ.

Solution: Assume solution of (w,Ψ) in the form,

wM =
MX
j=1

bjφj ≡
MX
j=1

bj sin
jπx

L
, ΨN =

NX
j=1

cjψj ≡
NX
j=1

cj cos
jπx

L
(1)

Substitution of Eq. (1) into the weak forms (S = GAK and D = EI)

0 =

Z L

0

∙
GAK

dv1
dx

µ
dw

dx
+Ψ

¶
+ kv1w − v1q

¸
dx (2a)

0 =

Z L

0

∙
EI
dv2
dx

dΨ

dx
+GAK v2

µ
dw

dx
+Ψ

¶¸
dx (2b)

we obtain following system of algebraic equations,∙
[K11] [K12]
[K21] [K22]

¸½ {b}
{c}

¾
=

½ {F 1}
{F 2}

¾
(3)

where

K11
ij =

Z L

0

µ
GAK

dφi
dx

dφj
dx

+ kφiφj

¶
dx , K12

ij =

Z L

0
GAK

dφi
dx

ψj dx ,

K21
ij =

Z L

0
GAKψi

dφj
dx

dx , K22
ij =

Z L

0

µ
EI
dψi
dx

dψj
dx

+GAK ψiψj

¶
dx (4a)
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16 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

F 1i =

Z L

0
φiq dx , F

2
i = 0 (4b)

Substituting φi = sin(iπx/L) and ψi = cos(iπx/L) into the above equations and
evaluating the integrals, we obtain

K11
ij = GAK

L

2

µ
iπ

L

¶µ
jπ

L

¶
+
kL

2
, K12

ij = GAK
L

2

µ
iπ

L

¶
= K21

ji ,

K22
ij =

L

2

∙
GAK +EI

µ
iπ

L

¶µ
jπ

L

¶¸
(5a)

for i = j, and

Kαβ
ij = 0 , if i 6= j (5b)

F 1i = −
2q0L

iπ
for i = odd and F 1i = 0 for i = even (5c)

♠ New Problem 2.2:

A number of other problems associated with the Timoshenko beam theory. (1)
The same problem as above, with algebraic polynomials; (2) a cantilever beam,
clamped at the left end (x = 0) and subjected to an end moment, M0 at x = L.
The latter can be assigned with (a) algebraic or (b) trigonometric approximation
functions. For example, for Problem 2a, we have the following (M,N)-parameter
Ritz solution with algebraic polynomials,

wM =
MX
j=1

bjφj ≡
MX
j=1

bjx
j , ΨN =

NX
j=1

cjψj ≡
NX
j=1

cjx
j (1)

The matrix equations are of the form as given in Eq.(3) of Problem 2.12, and the
coefficient matrices are the same as given in Eq. (4a) of Problem 2.12, with the
following definition of the right-hand vectors,

F 1i =

Z L

0
φiq0 dx , F

2
i = −M0ψi(L) (2)

For the choice of approximation functions, φi = ψi = x
i, the coefficients can be

evaluated as,

K11
ij = GAK

ij

i+ j − 1 (L)
i+j−1 , K12

ij = GAK
i

i+ j
(L)i+j

K21
ij = GAK

j

i+ j
(L)i+j , F 1i =

q0
i+ 1

(L)i+1 , F 2i = −M0 (L)
i (3)

K22
ij = EI

ij

i+ j − 1 (L)
i+j−1 +GAK

1

i+ j + 1
(L)i+j+1
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For M = N = 1, we have

b1 =
q0L

3

6CEI

µ
3EI

GAKL2
+ 1

¶
+
M0L

2CEI

c1 = −
1

CEI

Ã
q0L

2

4
+M0

!
, C =

Ã
1 +

GAK

EI
− L

2

12

! (4)

For M = 2 and N = 1, we obtain

b1 =
q0L

GAK
, c1 = −

1

CEI

Ã
q0L

2

6
+M0

!

b2 = −
q0L

2

12EI

µ
1− 6EI

GAKL2

¶
+
M0

2EI

(5)

Note that the Timoshenko beam theory does not behave well for M = N = 1
due to numerical locking. However, it behaves well when the number of terms are
increased. One can use one more term for w than for Ψ (i.e., M = N + 1). Indeed,
for M = 4 and N = 3, one obtains the exact solution,

w(x) =
q0x

2

24EI
(6L2 − 4Lx+ x2) + q0x

2GAK
(2L− x) + M0x

2

2EI

Ψ(x) =
q0x

6EI
(−3L2 + 3Lx− x2)− M0x

EI

(6)

Problem 2.13: Solve the Poisson equation governing heat conduction in a square
region:

−k∇2T = g0

T = 0 on sides x = 1 and y = 1 (1)

∂T

∂n
= 0 (insulated) on sides x = 0 and y = 0 (2)

using a one-parameter Ritz approximation of the form

T1(x, y) = c1(1− x2)(1− y2) (3)

Solution: The weak form of the equation is given by

0 =

Z 1

0

Z 1

0

∙
k

µ
∂v

∂x

∂T

∂x
+

∂v

∂y

∂T

∂y

¶
− vg0

¸
dxdy (4)
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18 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

The coefficients B11 and F1 are given by

B11 =

Z 1

0

Z 1

0
k

µ
∂φ1
∂x

∂φ1
∂x

+
∂φ1
∂y

∂φ1
∂y

¶
dxdy

=

Z 1

0

Z 1

0
k
h
4x2(1− y2)2 + 4y2(1− x2)2

i
dxdy =

64

45
k (5a)

F1 =

Z 1

0

Z 1

0
g0φ1 dxdy

=

Z 1

0

Z 1

0
g0(1− x2)(1− y2) dxdy =

4

9
g0 (5b)

and the parameter c1 is given by

c1 =
F1
B11

=
5g0
16k

(6)

Problem 2.14: Determine φi for a two-parameter Galerkin approximation with
algebraic approximation functions for Problem 2.8.

Solution: We must choose φ0 such that it satisfies all specified boundary conditions:

φ0(0) = θ(0) ,

∙
dφ0
dx

+ ĉφ0

¸
x=L

= 0 (1)

and φi must be selected such that it satisfies the homogeneous form of all specified
boundary conditions:

φi(0) = 0 ,

∙
dφi
dx

+ ĉφi

¸
x=L

= 0 (2)

To construct these functions, we begin with φ0 = a+bx, and determine the constants
a and b such that φ0 satisfies the conditions in Eq. (1). We obtain,

φ0 = 100

∙
1− ĉ

1 + ĉL
x

¸
Similarly, we begin with φ1 = a + bx + cx2 (we must have one more parameters
than the number of conditions) and determine a, b and c such that φ1 satisfies the
conditions in Eq. (2). We obtain,

φ1 = x

∙
1− 1 + ĉL

2 + ĉL

x

L

¸
The next function should be higher order than φ1; and there are two choices:
φ2 = a+ bx+ cx

3 and φ2 = a+ bx
2 + cx3. For the first choice, we obtain,

φ2 = x

∙
1− 1 + ĉL

3 + ĉL
(
x

L
)2
¸
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It is clear that the Galerkin and other weighted residual methods involve
cumbersome algebra and result in complicated expressions for the approximation
functions.

Problem 2.15: Consider the (Neumann) boundary value problem

−d
2u

dx2
= f for 0 < x < L

µ
du

dx

¶ ¯̄̄̄
x=0

=

µ
du

dx

¶ ¯̄̄̄
x=L

= 0

Find a two-parameter Galerkin approximation of the problem using trigonometric
approximation functions, when (a) f = f0 cos(πx/L) and (b) f = f0.

Solution: For this problem, we can choose φ0 = 0 or a constant (i.e., the solution
can be determined only within a constant) and φi = cos iπx/L. The residual is given
by

R = −
NX
i=1

cj
d2φj
dx2

− f

The weighted-residual statements are given by

0 =

Z L

0
cos

πx

L
R dx = (

π

L
)2
L

2
c1 −

Z L

0
f cos

πx

L
dx

0 =

Z L

0
cos

2πx

L
R dx = (

2π

L
)2
L

2
c2 −

Z L

0
f cos

2πx

L
dx

For (a) f = f0 cos
πx
L , we obtain c1 =

f0L2

π2 and c2 = 0. When (b) f = f0, we obtain
c1 = c2 = 0.

♠ Part (b) solution indicates that the Neumann problem does not have a solution for
the case in which the forcing function is a constant (because the solvability conditions
are not satisfied by the data, f). For additional discussion on this, the reader may
consult the book by Reddy [3].

Problem 2.16: Find a one-parameter approximate solution of the nonlinear equation

−2ud
2u

dx2
+

µ
du

dx

¶2
= 4 for 0 < x < 1

subject to the boundary conditions u(0) = 1 and u(1) = 0, and compare it with
the exact solution u0 = 1 − x2. Use (a) the Galerkin method, (b) the least-squares
method, and (c) the Petrov—Galerkin method with weight function w = 1.
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Solution: We must choose φ0 such that it satisfies all specified boundary conditions:

φ0(0) = 1 , φ0(1) = 0 (1)

and φi must be selected such that it satisfies the homogeneous form of all specified
boundary conditions:

φi(0) = 0 , φi(1) = 0 (2)

Obviously, the following choice would meet the requirements,

φ0 = 1− x , φ1 = x(1− x) (3)

The residual is given by

R = −2c1(c1φ1 + φ0)
d2φ1
dx2

+ (c1
dφ1
dx

+
dφ0
dx
)2 − 4

= −2
h
(1− x) + c1(x− x2)

i
(−2c1) + [−1 + c1(1− 2x)]2 − 4

= −3 + 2c1 + (c1)2 (4)

(a) The weighted-residual statement for the Galerkin method is given by

0 =

Z 1

0
(x− x2)R dx = 1

6

h
−3 + 2c1 + (c1)2

i
which gives two solutions, (c1)1 = 1 and (c1)2 = −3. We choose c1 = 1 on the basis of
the criterion that

R 1
0 R dx is a minimum. For c1 = 1, the Galerkin solution coincides

with the exact solution, u(x) = 1− x2.

(b) The least-squares statement is given by

0 =

Z 1

0

dR

dc1
R dx =

Z 1

0
2(1 + c1)

h
−3 + 2c1 + (c1)2

i
dx

which gives three solutions, (c1)1 = 1, (c1)2 = −3, and (c1)3 = −1. Once again, we
choose c1 = 1.

Problem 2.17: Give a one-parameter Galerkin solution of the equation

−∇2u = 1 in Ω (= unit square)

u = 0 on Γ

Use (a) algebraic and (b) trigonometric approximation functions.
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Solution: For this problem, all of the boundary conditions are of the essential type.
Hence, the difference between the Ritz and Galerkin methods disappears. In both
methods, we must choose φ0 and φi such that

φ0 = 0 , φi = 0 on Γ (1)

We choose the approximation in the form,

u1 = c11 sinπx sinπy (2)

and compute the residual,

R =
h
2c11π

2 sinπx sinπy − 1
i

(3)

The Galerkin integral yields the result,

0 =

Z
Ω
R sinπx sinπy dxdy

=

Z 1

0

Z 1

0

h
2c11π

2 sin2 πx sin2 πy − sin πx sinπy
i
dxdy

= 2c11π
2
µ
1

4

¶
− 4

π2
(4)

from which we obtain, c11 =
8
π4 .

Problem 2.18: Repeat Problem 2.17(a) for an equilateral triangular domain. Hint:
Use the product of equations of the lines representing the sides of the triangle for the
approximation function. Answer: c1 = −12 .

Solution: For the coordinate system shown in the figure, the equations of the
boundary segments AB, BC, and CA are, respectively:

x−√3y − 2
3
a = 0 , x+

√
3y − 2

3
a = 0 , x+

1

3
a = 0

Therefore, a suitable choice of φ1 (φ0 = 0) is

φ1 =

µ
− 1
2a

¶
(x−√3y− 2

3
a)(x+

√
3y− 2

3
a)(x+

1

3
a)

because φ1 would be zero on any of the three line segments (i.e. boundary), satisfying
the requirement, φ1 = 0 on Γ. The multiplicative constant added in the definition of
φ1 is for only normalization purpose. The residual becomes,

R = −∇2u− 1 = −c1∇2φ1 − 1 = −2c1 − 1

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.



22 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

Since the residual is a constant, the coefficient c1, in any weighted—residual method
is given by c1 = −1/2.

Problem 2.19: Consider the differential equation

−d
2u

dx2
= cosπx for 0 < x < 1

subject to the following three sets of boundary conditions:

(1) u(0) = 0, u(1) = 0

(2) u(0) = 0,
³
du
dx

´ ¯̄̄̄
x=1

= 0

(3)
³
du
dx

´ ¯̄̄̄
x=0

= 0,
³
du
dx

´ ¯̄̄̄
x=1

= 0

Determine a three-parameter solution, with trigonometric functions, using (a) the
Ritz method, (b) the least-squares method, and (c) collocation at x = 1

4 ,
1
2 , and

3
4 ,

and compare with the exact solutions:

(1) u0 = π−2(cosπx+ 2x− 1)
(2) u0 = π−2(cosπx− 1)
(3) u0 = π−2 cosπx

Solution: This problem has three sets of boundary conditions and three different
methods are to be used to determine the solution. Hence, it is advised that the
instructor should assign only one of the many combinations: (i) Solve the problem
for Set 1 boundary conditions with any one of the methods (three problems); (ii)
solve Set 2 boundary conditions with any one of the methods (three problems); and
(iii) solve Set 3 boundary conditions with any one of the methods (three problems).
Solutions for all cases are included here.

Set 1: u(0) = u(1) = 0.

Ritz method. The bilinear and linear forms are given by

B(u, v) =

Z 1

0

du

dx

dv

dx
dx , `(v) =

Z 1

0
v cosπxdx

We use φ0 = 0 and φi = sin iπx. We obtain

Bij =

Z 1

0
(iπ)2 cos iπx cos jπx dx =

(
0, if j 6=i
(iπ)2

2
, if j=i

)
. (1)

Fi =

(
0, if i is odd

2i
π(i2−1) , if i is even

)
. (2)
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The solution is given by

ci =
4

π3
1

i(i2 − 1) , for i even (3)

Weighted-residual methods. The residual is given by

R = −d
2UN
dx2

− cosπx =
NX
j=1

cj(jπ)
2 sin jπx− cosπx , and ∂R

∂ci
= (iπ)2 sin iπx (4)

The least-squares method requires

0 =

Z 1

0
(iπ)2 sin iπx

⎛⎝ NX
j=1

cj(jπ)
2 sin jπx− cosπx

⎞⎠ dx
The multiplicative factor (iπ)2 can be deleted. Then, it is clear that the least squares
method and the Galerkin method give the same equations. Furthermore, the solution
of the Galerkin and least squares methods would be the same as that of the Ritz
method.

For the collocation method, we have

0 = R(x =
1

4
) =

3X
j=1

cj(jπ)
2 sin

jπ

4
− cos π

4

= c1(π)
2
µ
1√
2

¶
+ c2(2π)

2 + c3(3π)
2
µ
1√
2

¶
− 1√

2

0 = R(x =
1

2
) =

3X
j=1

cj(jπ)
2 sin

jπ

2
− cos π

2

= c1(π)
2 + c2 · 0− c3(3π)2 − 0

0 = R(x =
3

4
) =

3X
j=1

cj(jπ)
2 sin

3jπ

4
− cos 3π

4

= c1(π)
2
µ
1√
2

¶
− c2(2π)2 + c3(3π)2

µ
1√
2

¶
+

1√
2

(5)

which gives c1 = c3 = 0 and c2 =
√
2/8π2.

Set 2: u(0) = du
dx(1) = 0. For the Ritz method, we use φ0 = 0, φ1 = x, φ2 = sinπx

and φ3 = sin 2πx. This choice makes the variational solution not vanish at x = 1. For
convenience, we denote the new set by {φ̂0 = x, φ̂1 = sinπx, φ̂2 = sin 2πx}. For the
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Ritz method, we need to evaluate only B0j , j = 0, 1, 2 and F0. All other coefficients
are the same as in Eqs.(1) and (2). We have,

B00 = 1, B01 = B02 = 0, F0 = −
2

π2
(6)

and the parameters ci, i = 1, 2, 3 are the same as in Eq. (3), and c0 is given by
c0 = − 2

π2
. Thus the solution of Set 2 boundary conditions differs from that of Set 1

by the term, (−2x/π2).
For the weighted-residual methods, the above set of approximation functions is

not admissible, because {φ̂0 = x, φ̂1 = sinπx, φ̂2 = sin 2πx} does not satisfy the
natural boundary condition, u(0) = du

dx(1) = 0. We select an alternative set,

uN =
NX
j=1

cjφj(x) + φ0 = 0 , φ0 = 0 , φj(x) = 1− cos jπx (7)

The residual is given by

R = −
NX
j=1

cj(jπ)
2 cos jπx− cosπx , and ∂R

∂ci
= −(iπ)2 cos iπx (8)

Clearly, weighted-integral statements for the Galerkin and least-squares methods
differ by a multiplicative constant (−(iπ)2), and hence give the same equations for
the undetermined parameters. We obtain,

Bij = −
(jπ)2

2
when i = j ; Bij = 0 when i 6= j

F1 =
1

2
, Fi = 0 when i 6= 1 (9)

The solution is given by

c1 = −
1

π2
, ci = 0 when i 6= 1 (10)

The variational solution coincides with the exact solution

u(x) =
1

π2
(cosπx− 1)

The collocation method gives the following algebraic equations

0 = R(x =
1

4
) = −

3X
j=1

cj(jπ)
2 cos

jπ

4
− cos π

4
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= −c1(π)2
µ
1√
2

¶
− c2 · 0 + c3(3π)2

µ
1√
2

¶
− 1√

2

0 = R(x =
1

2
) = −

3X
j=1

cj(jπ)
2 cos

jπ

2
− cos π

2

= −c1 · 0 + c2(2π)2 − c3 · 0− 0

0 = R(x =
3

4
) = −

3X
j=1

cj(jπ)
2 cos

3jπ

4
− cos 3π

4

= c1(π)
2
µ
1√
2

¶
− c2 · 0 + c3(3π)2

µ
1√
2

¶
+

1√
2

(10)

which gives c1 = − 1
π2
and c2 = c3 = 0.

Set 3: dudx(0) =
du
dx(1) = 0 Here we select the following approximation for all methods,

uN =
NX
j=1

cjφj(x) + φ0 = 0 , φ0 = 0 , φj(x) = cos jπx (11)

The residual is given by

R =
NX
j=1

cj(jπ)
2 cos jπx− cosπx , and ∂R

∂ci
= (iπ)2 cos iπx (12)

which differs from that given in Eq. (7) by only the sign in front of the parameter,
cj . Hence, we expect to obtain the negative of the solution in Eq.(10) in all methods:
c1 =

1
π2
and ci = 0 for all i 6= 1. Thus, the variational solutions coincide with the

exact solution,

u(x) =
cosπx

π2

Problem 2.20: Consider a cantilever beam of variable flexural rigidity, EI =
a0[2 − (x/L)2] and carrying a distributed load, q = q0[1 − (x/L)]. Find a three-
parameter solution using the collocation method.

Solution: Let W3(x) = c1x
2 + c2x

3 + c3x
4 and compute the residual,

R = d2

dx2

"
a0(2−

x2

L2
)
d2w

dx2

#
− q0

µ
1− x

L

¶

= a0

"
− 2
L2
d2w

dx2
+ (2− x

2

L2
)
d4w

dx4

#
− q0

µ
1− x

L

¶

= a0

"
− 2
L2
(2c1 + 6c2x+ 12c3x

2) + (2− x
2

L2
)24c3

#
− q0

µ
1− x

L

¶

= a0

"
48(1− x

2

L2
)c3 −

4

L2
c1 − 12

x

L2
c2

#
− q0

µ
1− x

L

¶
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We take the collocation points at x = L
4 ,

L
2 , and

3L
4 and obtain

R(L
4
) = a0

µ
− 4
L2
c1 −

3

L
c2 + 45c3

¶
− 3
4
q0 = 0

R(L
2
) = a0

µ
− 4
L2
c1 −

6

L
c2 + 36c3

¶
− 1
2
q0 = 0

R(3L
4
) = a0

µ
− 4
L2
c1 −

9

L
c2 + 21c3

¶
− 1
4
q0 = 0

The solution of these equations is

c1 = −
q0L

2

4a0
, c2 =

q0L

12a0
, and c3 = 0

Problem 2.21: Consider the problem of finding the fundamental frequency of
a circular membrane of radius a, fixed at its edge. The governing equation for
axisymmetric vibration is

−1
r

d

dr

µ
r
du

dr

¶
− λu = 0 0 < r < a

where λ is the frequency parameter and u is the deflection of the membrane. (a)
Determine the trigonometric approximation functions for the Galerkin method, (b)
use one-parameter Galerkin approximation to determine λ, and (c) use two-parameter
Galerkin approximation to determine λ.

Solution: (a) The approximation functions that satisfy the boundary condition u = 0
at r = a (and du/dr = 0 at r = 0) are

φ1(r) = cos
πr

2a
, φ2(r) = cos

3πr

2a
, φ3(r) = cos

5πr

2a
. . .

(b) For one-parameter approximation u(r) ≈ U1(r) = c1 cos(πr/2a), the Galerkin
integral is

Z a

0

(
1

r

d

dr

∙
r
π

2a

µ
− sin πr

2a

¶¸
c1 + λc1 cos

πr

2a

)
cos

πr

2a
rdr = 0

from which we obtain

π2

4

µ
1

2
+
2

π2

¶
− λ

µ
1

2
− 2

π2

¶
= 0

It follows that λ = 5.832/a2.
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(c) For a two-parameter Ritz approximation U2(r) = c1 cos(πr/2a)+ c2 cos(3πr/2a),
we obtain

(1.7337− 0.29736λa2)c1 + (0.20264λa2 − 1.5)c2 = 0
(0.20264λa2 − 1.5)c1 + (11.603− 0.47748λa2)c2 = 0

Setting the determinant of the above equations to zero, we obtain a quadratic
equation in λ

0.10092λ̄2 − 3.6701λ̄+ 17.866 = 0, λ̄ = λa2

The smaller root of the equation is λ = 5.792/a2. The exact value is λ = 5.779/a2.

Problem 2.22: Find the first two eigenvalues associated with the differential
equation

−d
2u

dx2
= λu, 0 < x < 1

u(0) = 0, u(1) + u0(1) = 0

Use the least squares method. Use the operator definition to be A = −(d2/dx2) to
avoid increasing the degree of the characteristic polynomial for λ.

Solution: For this problem, the choice of the operator A is crucial. If we use the
definition A = −d2/dx2 − λ, we obtain the result

0 =

Z 1

0
A(φi)R dx =

nX
j=1

∙Z 1

0
A(φi)A(φj) dx

¸
cj

=
nX
j=1

"Z 1

0

Ã
d2φi
dx2

+ λφi

!Ã
d2φj
dx2

+ λφj

!
dx

#
cj

=
nX
j=1

(Z 1

0

"
d2φi
dx2

d2φj
dx2

+ λ

Ã
φi
d2φj
dx2

+
d2φi
dx2

φj

!
+ λ2φiφj

#
dx

)
cj (1)

which is a quadratic (matrix) eigenvalue problem, and it is more difficult (but not
impossible) to solve.

Alternatively, we identify the operator A of the problem to be A = −d2/dx2 so
that it does not include the unknown, λ (not consistent with the definition of the
method). Then

0 =

Z 1

0
A(φi)R dx =

nX
j=1

½Z 1

0
A(φi) [A(φj)− λφj ] dx

¾
cj

=
nX
j=1

"Z 1

0

Ã
d2φi
dx2

d2φj
dx2

+ λ
d2φi
dx2

φj

!
dx

#
cj

=
nX
j=1

(Kij − λMij) cj (2a)
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where

Kij =

Z 1

0
A(φi)A(φj) dx =

Z 1

0

d2φi
dx2

d2φj
dx2

dx

Mij =

Z 1

0
A(φi)φj dx = −

Z 1

0

d2φi
dx2

φj dx (2b)

Using the approximation functions φ1 = 3x− 2x2 and φ2 = 4x
2 − 3x3, we have

A(φ1) = 4 and A(φ2) = −4 + 12x, and

K11 = 16, K12 = K21 = 8, K22 = 16,

M11 =
10

3
, M12 =

8

3
, M21 =

8

3
, M22 =

38

15
(3)

The characteristic polynomial and its roots are

48− 64
5
λ+

1

3
λ2 = 0 giving λ1 = 4.212, λ2 = 34.188 (4)

Problem 2.23: Repeat Problem 2.22 using the Ritz method.

Solution: A two-parameter Ritz approximation with

φ0 = 0, φ1 = x, φ2 = x
2 (1)

yields ¯̄̄̄
2− λ

3 2− λ
4

2− λ
4

7
3 −

λ
5

¯̄̄̄
= 0 (2)

or
15λ2 − 640λ+ 2400 = 0 → λ1 = 4.1545, λ2 = 38.512 (3)

The exact values are
λ1 = 4.116, λ2 = 24.139 (4)

The weighted-residual solutions are more accurate than the Ritz solution because
they use higher-order polynomials that satisfy all boundary conditions.

Problem 2.24: Consider the Laplace equation

−∇2u = 0, 0 < x < 1, 0 < y <∞

u(0, y) = u(1, y) = 0 for y > 0

u(x, 0) = x(1− x), u(x,∞) = 0, 0 ≤ x ≤ 1
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Assuming an approximation of the form

U1(x, y) = c1(y)x(1− x)

find the differential equation for c1(y) and solve it exactly.

Solution: Substituting U1 = c1(y)(x− x2) into the differential equation, we obtain

R = −d
2c1
dy2

(x− x2) + 2c1

Using the Galerkin method, we obtain

0 =

Z 1

0
R(x− x2)dx = − 1

30

d2c1
dy2

+
1

3
c1

or
d2c1
dy2
− 10c1 = 0 or c1 = Ae−

√
10y +Be

√
10y

The condition
u(x, 0) = x− x2

imples that c1(0) = 1. Also, the condition

u(x,∞) = 0→ c1(∞) = 0

These conditions give B = 0 and A = 1, and the solution becomes

U1(x, y) = e
−
√
10y(x− x2)
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Chapter 3

SECOND-ORDER

DIFFERENTIAL EQUATIONS

IN ONE DIMENSION:

FINITE ELEMENT MODELS

For Problems 3.1—3.4, carry out the following tasks:

(a) Develop the weak forms of the given differential equation(s) over a typical finite
element, which is a geometric subdomain located between x = xa and x = xb.
Note that there are no “specified” boundary conditions at the element level.
Therefore, in going from Step 2 to Step 3 of the weak-form development, one
must identify the secondary variable(s) at the two ends of the domain by some
symbols (like Qe1 and Q

e
2 for the first problem) and complete the weak form.

(b) Assume an approximation(s) of the form

u(x) =
nX
j=1

uejψ
e
j (x) (i)

where u is a primary variable of the formulation and ψej (x) are the interpolation
functions, and uej are the values of the primary variable(s) at the jth node of the
element. Substitute the expression in (i) for the primary variable and ψei for the
weight function into the weak form(s) and derive the finite element model. Be
sure to define all coefficients of the model in terms of the problem data and ψei .

Problem 3.1: Develop the weak form and the finite element model of the following
differential equation over an element:

− d
dx

µ
a
du

dx

¶
+
d2

dx2

Ã
b
d2u

dx2

!
+ cu = f for xa < x < xb

where a, b, c, and f are known functions of position x. Ensure that the element
coefficient matrix [Ke] is symmetric. What is the nature of the interpolation functions
for the problem?

Solution: The second term must be integrated twice by parts while the first term
once by parts to distribute the differentiation equally between the weight function wi
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and the solution uh so that the resulting expression would be symmetric in wi and uh.
The integration-by-parts gives rise to two pairs of primary and secondary variables.
We have

0 =

Z xb

xa
wi(x)

"
− d
dx

µ
a
duh
dx

¶
+
d2

dx2

Ã
b
d2uh
dx2

!
+ cuh − f

#
dx (1)

=

Z xb

xa

"
dwi
dx

µ
a
duh
dx

¶
− dwi
dx

d

dx

Ã
b
d2uh
dx2

!
+ cwiuh − wif

#
dx

+

∙
−wi ·

µ
a
duh
dx

¶¸xb
xa

+

"
wi ·

d

dx

Ã
b
d2uh
dx2

!#xb
xa

=

Z xb

xa

"
dwi
dx

µ
a
duh
dx

¶
− dwi
dx

d

dx

Ã
b
d2uh
dx2

!
+ cwiuh − wif

#
dx

+

(
wi ·

"
−aduh

dx
+
d

dx

Ã
b
d2uh
dx2

!#)xb
xa

(2a)

=

Z xb

xa

"
dwi
dx

µ
a
duh
dx

¶
+
d2wi
dx2

Ã
b
d2uh
dx2

!
+ cwiuh − wif

#
dx

+

(
wi ·

"
−aduh

dx
+
d

dx

Ã
b
d2uh
dx2

!#)xb
xa

+

"
dwi
dx

· bd
2uh
dx2

#xb
xa

(2b)

From the boundary expressions of the last equation, we identify the primary and
secondary variables. The secondary variables are the expressions next to the weight
functions in the boundary terms:

Secondary variables:

"
−aduh

dx
+
d

dx

Ã
b
d2uh
dx2

!#
and b

d2uh
dx2

(2c)

The primary variables are identified by first listing the cofficients in the boundary
expressions

wi and
dwi
dx

(2d)

and then replace wi with the variable of the differential equation u. Thus the primary
variables

Primary variables: uh and
duh
dx

(2e)

Next, we denote the secondary variables at the ends of the element by some
symbols. We shall define these quantities such that they all have the negative sign:

Pa =

"
−aduh

dx
+
d

dx

Ã
b
d2uh
dx2

!#
xa

, Pb = −
"
−aduh

dx
+
d

dx

Ã
b
d2uh
dx2

!#
xb

Qa =

"
b
d2uh
dx2

#
xa

, Qb = −
"
b
d2uh
dx2

#
xb

(2d)
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Finally, the weak form is given by Eq. (2b), with the definitions in Eq. (2d). We
have

0 =

Z xb

xa

Ã
a
dwi
dx

duh
dx

+ b
d2wi
dx2

d2uh
dx2

+ cwiuh − wif
!
dx

− Pawi(xa)− Pbwi(xb)−Qa
dwi
dx
(xa)−Qb

dwi
dx
(xb) (3)

The primary variables include the dependent variable u and its derivative duh/dx.
As a rule, the primary variables must be continuous across elements. Therefore, the
finite element interpolation be such that both of the variables are treated as nodal
variables so that the continuity conditions can be used during the assembly elements.
Thus an element with two nodes (which is the minimum) will have four unknowns (u
and du/dx at each of the two ends of the element), requiring a four-term polynomial
- a cubic

uh(x) = c1 + c2x+ c3x
2 + c4x

3 (4)

The constants c1 through c4 can be expressed in terms of the nodal degrees of freedom

uh(xa) ≡ ∆1,
µ
duh
dx

¶
xa

≡ ∆2, uh(xb) ≡ ∆3,
µ
duh
dx

¶
xb

≡ ∆4 (5)

Thus we will have

uh(x) = c1 + c2x+ c3x
2 + c4x

3

= ∆1φ1(x) +∆2φ2(x) +∆3φ3(x) +∆4φ4(x)

=
4X
j=1

∆jφj(x) (6)

Note that ∆1 and ∆3 denote the values of the function u at the two nodes while ∆2
and ∆4 denote the values of derivative of u at the two nodes. The linear combination
(6) of functions that interpolate both the function and its derivative(s) are known
as the Hermite interpolation functions, and φj(x) are known as the Hermite cubic
interpolation functions. See Chapter 5 for additional details.

The finite element model is obtained by substituting

u(x) ≈ ueh(x) =
nX
j=1

uejφ
e
j(x) (7)

into the weak form (3). We obtain

[Ke]{ue} = {F e} or Keue = Fe (8)
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where

Ke
ij =

Z xb

xa

Ã
a
dφi
dx

dφj
dx

+ b
d2φi
dx2

d2φj
dx2

+ cφiφj

!
dx (9a)

Fi =

Z xb

xa
fφidx+ Paφi(xa) + Pbφi(xb) +Qa

dφi
dx
(xa) +Qb

dφi
dx
(xb) (9b)

Problem 3.2: Construct the weak form and the finite element model of the
differential equation

− d
dx

µ
a
du

dx

¶
− bdu

dx
= f for 0 < x < L

over a typical element Ωe = (xa, xb). Here a, b, and f are known functions of x, and
u is the dependent variable. The natural boundary condition should not involve the
function b(x). What type of interpolation functions may be used for u?

Solution: The weak form over an element interval (xa, xb) is given by

0 =

Z xb

xa

µ
a
dw

dx

du

dx
− bwdu

dx
− wf

¶
dx−Qaw(xa)−Qbw(xb) (1)

where the term involving b is not integrated by parts because it does not reduce the
differentiability required of the approximation functions. The finite element model is
given by

[Ke]{ue} = {F e} (2a)

where

Ke
ij =

Z xa

xb

µ
a
dψi
dx

dψj
dx
− b ψi

dψj
dx

¶
dx

F ei =

Z xa

xb

f ψidx+Qaψi(xa) +Qbψi(xb) (2b)

and ψi are the Lagrange interpolation functions. Note that the coefficient matrix is
not symmetric.

Problem 3.3: Develop the weak forms of the following pair of coupled second-order
differential equations over a typical element (xa, xb):

− d
dx

∙
a(x)

µ
u+

dv

dx

¶¸
= f(x) (1a)

− d
dx

µ
b(x)

du

dx

¶
+ a

µ
u+

dv

dx

¶
= q(x) (1b)
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where u and v are the dependent varibales, a, b, f and q are known functions of x.
Also identify the primary and secondary variables of the formulation.

Solution: Following the three-step procedure for each equation, we arrive at

0 =

Z xb

xa
w1

½
− d
dx

∙
a

µ
u+

dv

dx

¶¸
− f

¾
dx

=

Z xb

xa

∙
a
dw1
dx

µ
u+

dv

dx

¶
− w1f

¸
dx−

∙
w1 · a

µ
u+

dv

dx

¶¸xb
xa

=

Z xb

xa

∙
a
dw1
dx

µ
u+

dv

dx

¶
− w1f

¸
dx− w1(xa)P1 −w1(xb)P2 (2a)

where

P1 = −
∙
a

µ
u+

dv

dx

¶¸
xa

, P2 =

∙
a

µ
u+

dv

dx

¶¸
xb

(2b)

Similarly, we have

0 =

Z xb

xa
w2

∙
− d
dx

µ
b
du

dx

¶
+ a

µ
u+

dv

dx

¶
− q

¸
dx

=

Z xb

xa

∙
b
dw2
dx

du

dx
+ aw2

µ
u+

dv

dx

¶
− q

¸
dx−

∙
w2 · b

du

dx

¸xb
xa

=

Z xb

xa

∙
b
dw2
dx

du

dx
+ aw2

µ
u+

dv

dx

¶
− q

¸
dx− w2(xa)Q1 − w2(xb)Q2 (3a)

where

Q1 = −
∙
b
du

dx

¸
xa

, Q2 =

∙
b
du

dx

¸
xb

(3b)

New Problem 3.1: Consider the following differential equations governing bending
of a beam using the Euler—Bernoulli beam theory:

−d
2w

dx2
− M

EI
= 0, −d

2M

dx2
= q (1)

where w denotes the transverse deflection, M the bending moment and q the
distributed transverse load. Develop the weak forms of the above pair of coupled
second-order differential equations over a typical element (xa, xb). Also identify the
primary and secondary variables of the formulation. Caution: Do not eliminate M
from the equations; treat both w and M as independent unknowns.

Solution: Following the three-step procedure of developing weak forms, we obtain

0 =

Z xb

xa

µ
dv1
dx

dM

dx
− v1q

¶
dx− v1(xa)Q̄1 − v1(xb)Q̄2, (2a)

0 =

Z xb

xa

µ
dv2
dx

dw0
dx
− v2

M

EI

¶
dx− v2(xa)Θ1 − v2(xb)Θ2 (2b)
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where (v1, v2) are the weight functions (that have the interpretation of virtual
deflection δw0 and virtual moment δM , respectively), and

Q̄1 = −
µ
dM

dx

¶
x=xa

, Q̄2 =

µ
dM

dx

¶
x=xb

(3a)

Θ1 =

µ
−dw0
dx

¶
x=xa

, Θ2 =

µ
−dw0
dx

¶
x=xb

(3b)

Problem 3.4: Consider the following weak forms of a pair of coupled differential
equations:

0 =

Z xb

xa

µ
dw1
dx

dv

dx
− w1f

¶
dx− Paw1(xa)− Pbw1(xb) (1a)

0 =

Z xb

xa

µ
dw2
dx

du

dx
+ c w2v − w2q

¶
dx−Qaw2(xa)−Qbw2(xb) (1b)

where c(x) is a known function, w1 and w2 are weight functions, u and v are dependent
variables (primary variables), and Pa, Pb, Qa, and Qb are the secondary variables of
the formulation. Use the finite element approximations of the form

u(x) =
mX
j=1

uejψ
e
j (x) , v(x) =

nX
j=1

vejϕ
e
j(x) (2)

and w1 = ψi and w2 = ϕi and derive the finite element equations from the weak
forms. The finite element equations should be in the form

0 =
mX
j=1

K11
ij u

e
j +

nX
j=1

K12
ij v

e
j − F 1i (3a)

0 =
mX
j=1

K21
ij u

e
j +

nX
j=1

K22
ij v

e
j − F 2i (3b)

Define the coefficients K11
ij , K

12
ij , K

21
ij , K

22
ij , F

1
i , and F

2
i in terms of the interpolation

functions, known data, and secondary variables.

Solution: Substitution of the finite element approximation (2) into the weak forms
gives

0 =

Z xb

xa

⎡⎣dψi
dx

⎛⎝ nX
j=1

vej
dϕj
dx

⎞⎠− ψif

⎤⎦ dx− Paψi(xa)− Pbψi(xb)
=

nX
j=1

Aeijv
e
j − F ei (4a)
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where

Aeij =

Z xb

xa

dψi
dx

dϕj
dx

dx, F ei =

Z xb

xa
ψif dx+ Paψi(xa) + Pbψi(xb) (4b)

and

0 =

Z xb

xa

⎡⎣dϕi
dx

⎛⎝ mX
j=1

uej
dψj
dx

⎞⎠+ c ϕi
⎛⎝ nX
j=1

vejϕj

⎞⎠− qϕi
⎤⎦ dx

−Qaϕi(xa)−Qbϕi(xb)

=
mX
j=1

Beiju
e
j +

nX
j=1

Ceijv
e
j −Gei (5a)

where

Beij =

Z xb

xa

dϕi
dx

dψj
dx

dx = Aeji

Ceij =

Z xb

xa
cϕiϕj dx

Gei =

Z xb

xa
qϕi dx+Qaϕi(xa) +Qbϕi(xb)

(5b)

Comparing with the given expressions in (3a,b), it is clear that

K11
ij = 0, A

e
ij = K

12
ij , B

e
ij = K

21
ij , C

e
ij = K

22
ij , F

e
i = F

1
i , G

e
i = F

2
i (6)

New Problem 3.2: Develop the weighted-residual finite element model (not weak-
form finite element model) of the following pair of equations:

−d
2w0
dx2

− M

EI
= 0, −d

2M

dx2
= q (1)

Assume the following approximations of the form

w0(x) ≈
4X
i=1

∆iϕ
(1)
i (x), M(x) ≈

4X
i=1

Λiϕ
(2)
i (x), (2)

The finite element equations should be in the form

0 =
mX
j=1

K11
ij ∆

e
j +

nX
j=1

K12
ij Λ

e
j − F 1i (3a)

0 =
mX
j=1

K21
ij ∆

e
j +

nX
j=1

K22
ij Λ

e
j − F 2i (3b)
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(a) Define the coefficients K11
ij , K

12
ij , K

21
ij , K

22
ij , F

1
i , and F 2i in terms of the

interpolation functions, known data, and secondary variables, and (b) comment on
the choice of the interpolation functions (what type, Lagrange or Hermite, and why).

Solution: The weighted-residual statements of Eqs. (1) are

0 =

Z xb

xa
v1

Ã
−d

2w0
dx2

− M

EI

!
dx, 0 =

Z xb

xa
v2

Ã
−d

2M

dx2
− q

!
dx (4)

where (v1, v2) are the weight functions. A close examination of the above statements
indicate that v1 ∼M and v2 ∼ w0 (i.e., v2q0 must be work done; therefore, v2 must be
like w0). Using approximations (1), we obtain the following Galerkin (i.e. v1 ∼ ϕ

(2)
i

and v2 ∼ ϕ
(1)
i ) finite element model:∙

[0] [Ae]
[Be] [De]

¸½ {∆e}
{Λe}

¾
=

½ {fe}
{0}

¾
(5)

where ([K11] = [0], [K12] = [A], [K21] = [B], [K22] = [C], {F 1} = {f}, and
{F 2} = {0})

Aeij =

Z xb

xa
ϕ
(1)
i

d2ϕ
(2)
j

dx2
dx, fei = −

Z xb

xa
qϕ

(1)
i dx

Beij =

Z xb

xa
ϕ
(2)
i

d2ϕ
(1)
j

dx2
dx, Deij =

Z xb

xa
ϕ
(2)
i ϕ

(2)
j dx (6)

Note that Hermite cubic interpolations of both w0 and M are implied by Eq. (4a,b),

and ϕ
(1)
i = ϕ

(2)
i . The coefficient matrix in Eq. (5) is not symmetric.

New Problem 3.3: Suppose that the 1—D Lagrange cubic element with equally
spaced nodes has a source of f(x) = f0x/h. Compute its contribution to node 2.

Solution: The contribution can be calculated using the equation

fe2 =

Z h

0
f(x)ψe2(x) dx

Thus, first we need to determine ψ2 of the element. Since ψ2 must vanish at x = 0,
x = 2h/3, and x = h, we can write

ψe2(x) = C(x− 0)(x−
2h

3
)(x− h), ψe2(h/3) = 1 gives C =

27

2h3
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Then

fe2 =
27f0
2h4

Z h

0
x2
µ
x− 2h

3

¶
(x− h)dx

=
27f0
2h4

Z h

0

µ
x4 − 5

3
hx3 +

2

3
h2x2

¶
dx

=

µ
27f0
2h4

¶
h5

180
=
3

40
f0h

Problem 3.5: Derive the Lagrange cubic interpolation functions for a four-
node (one-dimensional) element (with equally spaced nodes) using the alternative
procedure based on interpolation properties (3.2.18a,b). Use the local coordinate x̄
for simplicity.

Solution: The Lagrange interpolation function for node 1 of a cubic element with
equally-spaced nodes should be of the form, because it must vanish at x̄ = h/3,
x̄ = 2h/3 and x̄ = h, where x̄ is the local coordinate with the origin at node 1,

ψ1(x̄) = c1(x̄−
h

3
)(x̄− 2h

3
)(x̄− h) (1)

where c1 is an arbitrary constant, which can be determined by requiring that ψ1 take
the value of unity at node 1, i.e., x̄ = 0:

ψ1(0) = 1→ c1 = −
9

2h3
(2)

Thus we have

ψ1(x̄) =

µ
1− 3x̄

h

¶µ
1− 3x̄

2h

¶µ
1− x̄

h

¶
(3)

Similarly, the Lagrange interpolation function for node 2 of a cubic element with
equally-spaced nodes should be of the form, because it must vanish at x̄ = 0, x̄ = 2h/3
and x̄ = h, where x̄ is the local coordinate with the origin at node 1,

ψ2(x̄) = c2(x̄− 0)(x̄−
2h

3
)(x̄− h) (4)

The constant c2 is determined from the condition that ψ2(h/3) = 1: c2 =
27
2h3 . Thus,

we have

ψ2(x̄) = 9
x̄

h

µ
1− 3x̄

2h

¶µ
1− x̄

h

¶
(5)

Other functions can be derived in a similar fashion.
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Problem 3.6: Evaluate the element matrices [K11], [K12], and [K22] for the linear
interpolation of u(x) and v(x) in Problem 3.4.

Solution: By inspection and the results available in the book for linear interpolation
functions (ϕi(x) = ψix)), we have [K

11] = [0] and

[K12] = [K21] =
1

he

∙
1 −1
−1 1

¸
; [K22] =

ce1he
6

∙
2 1
1 2

¸

Problem 3.7: Evaluate the following coefficient matrices and source vector using
the linear Lagrange interpolation functions:

Ke
ij =

Z xb

xa
(ae0 + a

e
1x)
dψei
dx

dψej
dx
dx

Me
ij =

Z xb

xa
(ce0 + c

e
1x)ψ

e
iψ

e
jdx

fei =

Z xb

xa
(fe0 + f

e
1x)ψ

e
i dx

where ae0, a
e
1, c

e
0, c

e
1, f

e
0 , and f

e
1 are constants.

Solution: We have

[Ke] =
ae0
he

∙
1 −1
−1 1

¸
+
ae1
he

µ
xa + xb
2

¶ ∙
1 −1
−1 1

¸
[Me] =

ce0he
6

∙
2 1
1 2

¸
+
ce1he
12

µ
xa

∙
4 2
2 4

¸
+ he

∙
1 1
1 3

¸¶
{fe} = qe0he

2

½
1
1

¾
+
qe1he
6

µ
xa

½
3
3

¾
+ he

½
1
2

¾¶

Problem 3.8: (Heat transfer in a rod) The governing differential equation and
convection boundary condition are of the form:

−d
2θ

dx2
+ cθ = 0, 0 < x < L (1)

θ(0) = T0 − T∞,
∙
k
dθ

dx
+ βθ

¸
x=L

= 0 (2)

where θ = T−T∞, c = βP/(Ak), β is the heat transfer coefficient, P is the perimeter,
A is the area of cross section, and k is the conductivity. For a mesh of two linear
elements (of equal length), give (a) the boundary conditions on the nodal variables
(primary as well as secondary variables) and (b) the final condensed finite element
equations for the unknowns (both primary and secondary nodal variables). Use the

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.



Steel Aluminum

d = 4 in.

     Steel

12 in. 10 in.8 in.

d = 2.5 in. d = 2 in.

Steel, Es = 30 × 106 psi
Aluminum, Ea = 10 × 106 psi

 500 kips

 200 kips

SOLUTIONS MANUAL 41

following data: T0 = 120
◦ C, T∞ = 20◦ C, L = 0.25 m, c = 256, β = 64, and k = 50

(with proper units).

Solution: For two linear elements, we have (h = L/2)⎛⎝1
h

⎡⎣ 1 −1 0
−1 2 −1
0 −1 1

⎤⎦+ ch
6

⎡⎣ 2 1 0
1 4 1
0 1 2

⎤⎦⎞⎠⎧⎨⎩
U1
U2
U3

⎫⎬⎭ =
⎧⎨⎩

Q11
Q12 +Q

2
1

Q22

⎫⎬⎭
with

U1 = 100, Q
1
2 +Q

2
1 = 0, Q

2
2 = −

β

k
U3

Hence, the condensed equations areµ
1

h

∙
2 −1
−1 1 + βh

k

¸
+
ch

6

∙
4 1
1 2

¸¶½
U2
U3

¾
=

½
( 1h −

ch
6 )U1
0

¾

Q11 =

µ
1

h
+
ch

3

¶
U1 +

µ
−1
h
+
ch

6

¶
U2

Problem 3.9: (Axial deformation of a bar) The governing differential equation is of
the form (E and A are constant):

− d
dx

∙
EA

du

dx

¸
= 0, 0 < x < L (1)

For the minimum number of linear elements, give (a) the boundary conditions on the
nodal variables (primary as well as secondary variables) and (b) the final condensed
finite element equations for the unknowns.

Figure P3.9

Solution: For three linear elements, we have (E1 = E3 = Es and E2 = Ea)⎡⎢⎢⎢⎢⎣
EsA1
h1

−EsA1h1
0 0

−EsA1h1
EsA1
h1

+ EaA2
h2

−EaA2h2
0

0 −EaA2h2
EaA2
h2

+ EsA3
h3

−EsA3h3

0 0 −EsA3h3
EsA3
h3

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩

Q11
Q12 +Q

2
1

Q22 +Q
3
1

Q32

⎫⎪⎪⎬⎪⎪⎭
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with

h1 = 12, h2 = 8, h3 = 10, A1 =
π(4)2

4
, A2 =

π(2.5)2

4
, A3 =

π(2)2

4

U1 = 0, Q
1
2 +Q

2
1 = 0, Q

2
2 +Q

3
1 = −200, Q32 = 500

Hence, the condensed equations are⎡⎢⎣
EsA1
h1

+ EaA2
h2

−EaA2h2
0

−EaA2h2
EaA2
h2

+ EsA3
h3

−EsA3h3

0 −EsA3h3
EsA3
h3

⎤⎥⎦
⎧⎨⎩
U2
U3
U4

⎫⎬⎭ =
⎧⎨⎩

0
−200
500

⎫⎬⎭
Q11 = −

EsA1
h1

U2

Problem 3.10: Re-solve the problem in Example 3.2.1 using the uniform mesh of
three linear finite elements.

Solution: The coefficient matrix is defined by

Ke
ij =

Z xb

xa

Ã
dψei
dx

dψej
dx
− ψeiψ

e
j

!
dx

fei =

Z xb

xa
(−x2)ψei dx (1)

The element coefficient matrix (for any element) is given by Eq. (3.2.39), with
ae = 1, ce = −1, he = 1

3 :

[Ke] =
1

18

∙
52 −55
−55 52

¸
(2)

The coefficients fei are evaluated as

fe1 = −
1

he

∙
xb
3

³
x3b − x3a

´
− 1
4

³
x4b − x4a

´¸

fe2 = −
1

he

∙
1

4

³
x4b − x4a

´
− xa
3

³
x3b − x3a

´¸
(3)

Evaluating fei for each element, we obtain

Element 1 (h1 =
1
3 , xa = 0, xb = h1 =

1
3):

f11 = −
1

324
= −0.003086, f12 = −

3

324
= −0.00926
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Element 2 (h2 =
1
3 , xa = h1 =

1
3 , xb = h1 + h2 =

2
3):

f21 = −
11

324
= −0.03395, f22 = −

17

324
= −0.05247

Element 3 (h3 =
1
3 , xa = h1 + h2 =

2
3 , xb = h1 + h2 + h3 = 1):

f31 = −
33

324
= −0.10185, f32 = −

43

324
= −0.13272

The assembled set of equations are

1

18

⎡⎢⎢⎣
52 −55 0 0
−55 104 −55 0
0 −55 104 −55
0 0 −55 52

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ = −
⎧⎪⎪⎨⎪⎪⎩
0.00308
0.04321
0.15432
0.13272

⎫⎪⎪⎬⎪⎪⎭+
⎧⎪⎪⎨⎪⎪⎩

Q11
Q12 +Q

2
1

Q22 +Q
3
1

Q32

⎫⎪⎪⎬⎪⎪⎭ (4)

Since U1 = 0 and U4 = 0, the condensed equations are obtained by omitting the first
and fourth row and column of the assembled equations. The condensed equations are

1

18

∙
104 −55
−55 104

¸½
U2
U3

¾
= −

½
0.04321
0.15432

¾
(5)

The solution is

U1 = 0.0, U2 = −0.02999, U3 = −0.04257, U4 = 0.0

The secondary variables can be computed using either the definition or from the
element equations. We have

(Q11)def ≡ −
µ
a
du

dx

¶¯̄̄̄
¯
x=0

≈ U1 − U2
h

= 0.08998

(Q32)def ≡
µ
a
du

dx

¶¯̄̄̄
¯
x=1

≈ U3 − U2
h

= 0.12771

(Q11)equil = K
1
11U1 +K

1
12U2 − f11 = 0.09164

(Q32)equil = K
3
21U3 +K

3
22U4 − f32 = 0.26280 (6)

Problem 3.11: Solve the differential equation in Example 3.2.1 for the mixed
boundary conditions

u(0) = 0,

µ
du

dx

¶ ¯̄̄̄
x=1

= 1
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Use the uniform mesh of three linear elements. The exact solution is

u(x) = 2
cos(1− x)− sinx

cos(1)
+ x2 − 2

Solution: Use the calculations of Problem 3.10. The boundary conditions are U1 = 0
and Q32 = 1. Hence, the condensed equations are obtained by omitting the first row
and column of the assembled equations

1

18

⎡⎣ 104 −55 0
−55 104 −55
0 −55 52

⎤⎦⎧⎨⎩
U2
U3
U4

⎫⎬⎭ =
⎧⎨⎩
−0.04321
−0.15432
0.86728

⎫⎬⎭
The solution is given by

U1 = 0.0, U2 = 0.4134, U3 = 0.7958, U4 = 1.1420

The secondary variables can be computed using either the definition or from the
element equations. We have

(Q11)def = −
U2 − U1
h

= −1.2402

(Q11)equil = 2.8889U1 − 3.0555U2 + 0.00308 = −1.2662

Problem 3.12: Solve the differential equation in Example 3.2.1 for the natural (or
Neumann) boundary conditionsµ

du

dx

¶ ¯̄̄̄
x=0

= 1,

µ
du

dx

¶ ¯̄̄̄
x=1

= 0

Use the uniform mesh of three linear finite elements to solve the problem. Verify your
solution with the analytical solution

u(x) =
cos(1− x) + 2 cosx

sin(1)
+ x2 − 2

Solution: Use the results of Example 3.2.1. The boundary conditions are Q11 = −1
and Q32 = 0. The assembled matrix equations (4) of Problem 3.10 are solved for the
four nodal values

1

18

⎡⎢⎢⎣
52 −55 0 0
−55 104 −55 0
0 −55 104 −55
0 0 −55 52

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ = −
⎧⎪⎪⎨⎪⎪⎩
1.00308
0.04321
0.15432
0.13272

⎫⎪⎪⎬⎪⎪⎭
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We obtain (with the help of a computer)

U1 = 1.0280, U2 = 1.3002, U3 = 1.4447, U4 = 1.4821

Problem 3.13: Solve the problem described by the following equations

−d
2u

dx2
= cosπx, 0 < x < 1; u(0) = 0, u(1) = 0

Use the uniform mesh of three linear elements to solve the problem and compare
against the exact solution

u(x) =
1

π2
(cosπx+ 2x− 1)

Solution: The main part of the problem is to compute the source vector for an
element. We have

fei =

Z xb

xa
cosπx ψei dx

fe1 =

Z xb

xb

cosπx

µ
xb − x
he

¶
dx

=
1

he

∙
xb
π
sinπx−

µ
1

π2
cosπx+

x

π
sinπx

¶¸xb
xa

= − 1
π
sinπxa −

1

heπ2
(cosπxb − cosπxa)

fe2 =

Z xb

xa
cosπx

µ
x− xa
he

¶
dx

=
1

heπ2
(cosπxb − cosπxa) +

1

π
sinπxb

The element equations are∙
3 −3
−3 3

¸½
ue1
ue2

¾
=

½
fe1
fe2

¾
+

½
Qe1
Qe2

¾
with the element source terms are given as follows.

Element 1 (xa = 0 and xb = h = 0.333333):

f11 = −
1

hπ2
(cosπh− 1) = 3

2π2
= 0.15198

f12 =
1

hπ2
(cosπh− 1) + 1

π
sinπh = − 3

2π2
+

√
3

2π
= 0.12368
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Element 2 (xa = h and xb = 2h):

f21 = −
√
3

2π
+
3

π2
= 0.02830

f22 = −
3

π2
+

√
3

2π
= −0.02830

Element 3 (xa = 2h and xb = 3h = 1):

f31 = −
√
3

2π
+

3

2π2
= −0.12368, f32 = −

3

2π2
= −0.15198

The assembled set of equations are⎡⎢⎢⎣
3 −3 0 0
−3 6 −3 0
0 −3 6 −3

0 0 −3 3

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩

0.15198
0.15198
−0.15198
−0.15198

⎫⎪⎪⎬⎪⎪⎭+
⎧⎪⎪⎨⎪⎪⎩
Q11
0
0
Q32

⎫⎪⎪⎬⎪⎪⎭
and the condensed equations are∙

6 −3
−3 6

¸½
U2
U3

¾
=

½
0.15198
−0.15198

¾
whose solution is

U2 = 0.016887, U3 = −0.016887

The exact solution is the same as the finite element solution at the nodes.

Problem 3.14: Solve the differential equation in Problem 3.13 using the mixed
boundary conditions

u(0) = 0,

µ
du

dx

¶ ¯̄̄̄
x=1

= 0

Use the uniform mesh of three linear elements to solve the problem and compare
against the exact solution

u(x) =
1

π2
(cosπx− 1)

Solution: The boundary conditions require U1 = 0 and Q32 = 0. Hence, the
condensed equations are⎡⎣ 6 −3 0

−3 6 −3
0 −3 3

⎤⎦⎧⎨⎩
U2
U3
U4

⎫⎬⎭ =
⎧⎨⎩

0.15198
−0.15198
−0.15198

⎫⎬⎭
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whose solution is

U2 = −0.05066, U3 = −0.15198, U3 = −0.20264

Again, the exact solution is the same as the finite element solution at the nodes.

Problem 3.15: Solve the differential equation in Problem 3.13 using the Neumann
boundary conditions µ

du

dx

¶ ¯̄̄̄
x=0

= 0,

µ
du

dx

¶ ¯̄̄̄
x=1

= 0

Use the uniform mesh of three linear elements to solve the problem and compare
against the exact solution

u(x) =
cosπx

π2

Solution: For this case, the boundary conditions require Q11 = 0 and Q
3
2 = 0. SInce

none of the UI are specified, the condensed equations are the same as the assembled
equations. However, the coefficient matrix of the assembled equations is singular and
the solution can be determined by specifying one of the UI . Let U1 = 1/π

2 (dictated
by the known exact solution) and obtain the condensed equations⎡⎣ 6 −3 0

−3 6 −3
0 −3 3

⎤⎦⎧⎨⎩
U2
U3
U4

⎫⎬⎭ =
⎧⎨⎩
0.15198 + 0.30396
−0.15198
−0.15198

⎫⎬⎭
Hence, the solution is

U1 = 0.10132, U2 = 0.05066, U3 = −0.05066, U3 = −0.10132

which coincides with the exact solution at the nodes.

If we choose U1 = 0, the solution we obtain is the same as that of Problem 3.14,
and both problems have the same solution gradient, du/dx, as indicated by the exact
solutions of the two problems.
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k1 = 60 lb/in
  100 lbs.

k2 = 80 lb/in

k3 = 50 lb/in
 80 lbs.

k5= 120 lb/in

k4 = 150 lb/in

k6 = 180 lb/in

1

4

1 2 3

4
5

2

3
5

6
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Chapter 4

SECOND-ORDER

DIFFERENTIAL EQUATIONS

IN ONE DIMENSION:

APPLICATIONS

Discrete Elements

Problem 4.1: Consider the system of linear elastic springs shown in Fig. P4.1.
Assemble the element equations to obtain the force-displacement relations for the
entire system. Use the boundary conditions to write the condensed equations for the
unknown displacements and forces.

Fig. P4.1

Solution: The assembled matrix is

1 2 3 4 5

[K] =

⎡⎢⎢⎢⎢⎣
k1 −k1 0 0 0

k1 + k2 + k3 + k4 −k2 − k3 −k4 0
k2 + k3 + k5 −k5 0

k4 + k5 + k6 −k6
symm. k6

⎤⎥⎥⎥⎥⎦
1
2
3
4
5
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k1 
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k4 

k5 

k6 P
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=

⎡⎢⎢⎢⎢⎣
60 −60 0 0 0

340 −180 −150 0
300 −270 0

270 −180
symm. 180

⎤⎥⎥⎥⎥⎦
The condensed equations for the unknown primary variables are⎡⎣ 340 −180 −150

−180 300 −270
−150 −270 270

⎤⎦⎧⎨⎩
U2
U3
U4

⎫⎬⎭ =
⎧⎨⎩
100
0
80

⎫⎬⎭
and unknown secondary variables are Q11 = −k1U2 and Q62 = −k6U5.

Problem 4.2: Repeat Problem 4.1 for the system of linear springs shown in Fig.
P4.2.

Fig. P4.2

Solution: The assembled stiffness matrix is

[K] =

⎡⎢⎢⎢⎢⎣
k1 −k1 0 0 0
−k1 k1 + k2 + k3 + k4 −k3 −k2 −k4
0 −k3 k3 + k5 −k5 0
0 −k2 −k5 k2 + k5 + k6 −k6
0 −k4 0 −k6 k4 + k6

⎤⎥⎥⎥⎥⎦
The boundary conditions are: U1 = 0, Q62 + Q

4
2 = P , and the equilibrium requires

that the sums of all Q’s be zero. Hence, the condensed set of equations is⎡⎢⎢⎣
k1 + k2 + k3 + k4 −k3 −k2 −k4

−k3 k3 + k5 −k5 0
−k2 −k5 k2 + k5 + k6 −k6
−k4 0 −k6 k4 + k6

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U2
U3
U4
U5

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
0
0
0
P

⎫⎪⎪⎬⎪⎪⎭
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1
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Problem 4.3: Consider the direct current electric network shown in Fig. P4.3.
We wish to determine the voltages V and currents I in the network using the finite
element method. Set up the algebraic equations (i.e. condensed equations) for the
unknown voltages and currents.

Fig. P4.3

Solution: The assembled coefficient matrix is

[K] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
35 − 1

35 0 0 0 0

− 1
35

1
35 +

1
30 +

1
10 − 1

30 0 − 1
10 0

0 − 1
30

1
30 +

1
7 +

1
5 −15 −17 0

0 0 −15
1
5 +

1
15 − 1

15 0

0 − 1
10 −17 − 1

15
1
10 +

1
7 +

1
15 +

1
5 −15

0 0 0 0 −15
1
5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The condensed equations are⎡⎢⎢⎢⎣

1
35 +

1
30 +

1
10 − 1

30 0 − 1
10

− 1
30

1
30 +

1
7 +

1
5 −15 −17

0 −15
1
5 +

1
15 − 1

15

− 1
10 −17 − 1

15
1
10 +

1
7 +

1
15 +

1
5

⎤⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
V2
V3
V4
V5

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩

10
35
0
0
200
5

⎫⎪⎪⎬⎪⎪⎭
I1 =

V1 − V2
35

, I6 =
V5 − V6
5

Problem 4.4: Repeat Problem 4.3 for the direct current electric network shown in
Fig. P4.4.
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V7 = 40 volts

1
4

R = 5 Ω

R = 20 Ω R = 50 Ω

R = 10 Ω

R = 5 Ω
863

2 5

V1= 110 volts

R = 0 Ω

R = 20 Ω

R = 5 Ω
R = 15 Ω

R = 10 Ω

7
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Fig. P4.4

Solution: The assembled coefficient matrix is

[K] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
5 +

1
20 −15 0 − 1

20 0

−15
1
5 +

1
5 +

1
20 − 1

20 0 −15
0 − 1

20
1
20 +

1
5 0 0

− 1
20 0 0 1

20 +
1
10 +

1
50 − 1

10

0 −15 0 − 1
10

1
5 +

1
10 +

1
10

0 0 −15 0 − 1
10

0 0 0 − 1
50 0

0 0
0 0
−15 0

0 − 1
50

− 1
10 0

1
5 +

1
10 +

1
15 − 1

15

− 1
15

1
15 +

1
50

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The condensed equations are⎡⎢⎢⎢⎢⎢⎣

9
20 − 1

20 0 −15 0

− 1
20

1
4 0 0 −15

0 0 17
100 − 1

10 0

−15 0 − 1
10

2
5 − 1

10

0 −15 0 − 1
10

1
5 +

1
10 +

1
15

⎤⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
V2
V3
V4
V5
V6

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

110
5
0

110
20 +

40
50

0
40
15

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
I1 =

V1 − V2
5

+
V1 − V4
20

, I7 =
V7 − V6
15

+
V7 − V4
50
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2 3

4

aR 21 =

1

aR 32 =

aR 23 =

aR 65 =

aR 24 =

constant   
given

a

Q

0=P
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Problem 4.5: Write the condensed equations for the unknown pressures and flows
(use the minimum number of elements) for the hydraulic pipe network shown in Fig.
P4.5.

Fig. P4.5

Solution: The assembled system of equations for the pipe network are given by⎡⎢⎢⎢⎣
( 12a +

1
6a) − 1

2a 0 − 1
6a

− 1
2a ( 12a +

1
3a +

1
2a) −( 13a +

1
2a) 0

0 −( 13a +
1
2a) ( 13a +

1
2a +

1
2a) − 1

2a

− 1
6a 0 − 1

2a ( 12a +
1
6a)

⎤⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
P1
P2
P3
P4

⎫⎪⎪⎬⎪⎪⎭

=

⎧⎪⎪⎨⎪⎪⎩
Q11 +Q

5
1

Q12 +Q
2
1 +Q

3
1

Q22 +Q
3
2 +Q

4
1

Q42 +Q
5
2

⎫⎪⎪⎬⎪⎪⎭
The boundary conditions are: Q11 +Q

5
1 = Q , P4 = P , and equilibrium requires that

the sums of Q’s be zero:

Q12 +Q
2
1 +Q

3
1 = 0, Q22 +Q

3
2 +Q

4
1 = 0

The condensed equations are obtained by condensing variable P4 out:

1

6a

⎡⎣ 4 −3 0
−3 8 −5
0 −5 8

⎤⎦⎧⎨⎩
P1
P2
P3

⎫⎬⎭ =
⎧⎨⎩
Q
0
0

⎫⎬⎭+
⎧⎨⎩

1
6a · P
0 · P
1
2a · P

⎫⎬⎭
where P = 0. The solution of these equations is

P1 =
39

14
Qa , P2 =

12

7
Qa , P3 =

15

14
Qa
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2

1

2

3

4

5
6

Q = 5 × 10-4 m3/s

 L = 70 m
D = 10 cm

 L = 50 m
D = 7.5 cm

 L = 55 m
D = 5 cm L = 50 m

D = 7.5 cm

 L = 70 m
D = 5 cm

 L = 60 m
D = 8 cm

21
Q1

 e
P1

 e

he

Pipe resistance, Re  =
128µ he
  π d 4e

Q2
 e

P2
 e

5

3
4

6

1

•

•

•

•

•
•

• •
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Problem 4.6: Consider the hydraulic pipe network (the flow is assumed to be
laminar) shown in Fig. P4.6. Write the condensed equations for the unknown
pressures and flows (use the minimum number of elements.)

Fig. P4.6

Solution: The assembled equations are⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
R1

− 1
R1

0 0 0 0

− 1
R1

1
R1
+ 1

R2
+ 1

R3
− 1
R2

− 1
R3

0 0

0 − 1
R2

1
R2
+ 1

R4
0 − 1

R4
0

0 − 1
R3

0 1
R3
+ 1

R5
− 1
R5

0

0 0 − 1
R4

− 1
R5

1
R4
+ 1

R5
+ 1

R6
− 1
R6

0 0 0 0 − 1
R6

1
R6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P1
P2
P3
P4
P5
P6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

5× 10−4
0
0
0
0

5× 10−4

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
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In order to eliminate the “rigid body” mode, we must set P6 = 0 and solve the
condensed equations obtained by deleting the last row and column of the assembled
system.

Problem 4.7: Determine the maximum shear stresses in the solid steel (Gs = 12
msi) and aluminum (Ga = 4 msi) shafts shown in Fig. P4.7.

Fig. P4.7

Solution: The assembled system of equations for the three-element mesh is⎡⎢⎢⎣
k1 −k1 0 0
−k1 k1 + k2 −k2 0
0 −k2 k2 + k3 −k3
0 0 −k3 k3

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
θ1
θ2
θ3
θ4

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩

T 11
T 12 + T

2
1

T 22 + T
3
1

T 32

⎫⎪⎪⎬⎪⎪⎭
where ki are the shear stiffnesses ki = GiJi/hi and h1 = 30 in, h2 = 12 in., and
h3 = 24 in. We have

k1 = (12× 106)
π(1.5)4

32

1

2.5× 12 = 198, 804 lb-in

k2 = (12× 106)
π(1.5)4

32

1

12
= 497, 010 lb-in

k3 = (4× 106)
π

32

1

2× 12 = 16, 362 lb-in

The boundary conditions are

θ1 = 0, T
1
2 + T

2
1 = 200× 12 lb-in, T 22 + T 31 = 0, θ4 = 0

The condensed equations are obtained by deleting the first equation and the last
equation of the assembled system

103
∙
695.814 −497.010
−497.010 513.372

¸½
θ2
θ3

¾
=

½
2, 400
0

¾
Solving for the rotations θ2 and θ3, we obtain

θ2 = 0.011181 rad, θ3 = 0.010825 rad
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The torques at the fixed ends are calculated from the first and last equations of the
assembled system

TA = T
1
1 = −k1θ2 = −(198, 804)(0.011181) = −2222.83 lb-in

TD = T
3
2 = −k3θ3 = −(16, 362)(0.010825) = −177.12 lb-in

The maximum stresses in the steel and aluminum shafts are

τs =
TArs
Js

=
2222.83× 0.75

0.497
= 5, 591 psi

τa =
TDra
Ja

=
177.12× 0.5
0.0982

= 902 psi

Problem 4.8: A steel (Gs = 77 GPa) shaft and an aluminum (Ga = 27 GPa) tube
are connected to a fixed support and to a rigid disk, as shown in Fig. P4.8. If the
torque applied at the end is equal to T = 6, 325 N-m, determine the shear stresses in
the steel shaft and aluminum tube.

Fig. P4.8

Solution: The assembled system of equations for the two-element mesh is∙
k1 + k2 − (k1 + k2)
− (k1 + k2) k1 + k2

¸½
θ1
θ2

¾
=

½
T 11 + T

2
1

T 12 + T
2
2

¾
where ki are the shear stiffnesses ki = GiJi/hi and h1 = h2 = 500×10−3 m. We have

k1 = (27× 109)
π
¡
(76)4 − (60)4

¢
10−12

32

1

500× 10−3 = 108, 161 N-m

k2 = (77× 109)
π(50)4 × 10−12

32

1

500× 10−3 = 94, 493 N-m

The boundary conditions are

θ1 = 0, T
1
2 + T

2
2 = 6, 325 N-m

The condensed equations are

(108, 161 + 94, 493) θ2 = 6, 325; TL = − (108, 161 + 94, 493) θ2 = −6, 325
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Solving for the rotation θ2 of the right end relative to the left end, we obtain

θ2 = 0.0312 rad

The stresses in the steel and aluminum shafts are

τs =
Trs
Js

=
6, 325× 25× 10−3
613, 592× 10−12 = 257.7 MPa

τa =
Tra
Ja

=
6, 325× 38× 10−3
2, 002, 979× 10−12 = 120 MPa

Heat Transfer

New Problem 4.1: One-dimensional heat conduction/convection:

− d
dx

µ
a
du

dx

¶
+ cu = q for 0 < x < L

EBC: specify u, NBC: specify nxa
du

dx
+ β(u− u∞) = Q

where nx = −1 at x = xa and nx = 1 at x = xb.

Solution: The three steps for the construction of weak form over an element are

Step 1: 0 =

Z xb

xa
w

∙
− d
dx

µ
a
du

dx

¶
+ cu− q

¸
dx (1)

Step 2: 0 =

Z xb

xa

µ
a
dw

dx

du

dx
+ cwu− wq

¶
−w(xa)

∙
−adu
dx

¸
xa

− w(xb)
∙
a
du

dx

¸
xb

=

Z xb

xa

µ
a
dw

dx

du

dx
+ cwu− wq

¶
−w(xa) [Q1 − β(u− u∞)]xa

− w(xb) [Q2 − β(u− u∞)]xb (2)

Step 3: 0 =

Z xb

xa

µ
a
dw

dx

du

dx
+ cwu

¶
dx−

Z xb

xa
wq dx− w(xa)Q1 − w(xb)Q2

+ w(xa)βL
h
u(xa)− uL∞

i
+ w(xb)βR

h
u(xb)− uR∞

i
(3)

Substituting the approximation

u(x) =
nX
j=1

uejψ
e
j (x)
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for u and ψi for w, we obtain

0 =
nX
j=1

∙Z xb

xa

µ
a
dψi
dx

dψj
dx

+ cψiψj

¶
dx+ βLψi(xa)ψj(xa) + βRψi(xb)ψj(xb)

¸
uej

−
Z xb

xa
wq dx− βLu

L
∞ψi(xa)− βRu

R
∞ψi(xb)− ψi(xa)Q1 − ψi(xb)Q2 (4a)

0 =
nX
j=1

Ke
iju

e
j − F ei (4b)

where

Ke
ij =

Z xb

xa

µ
a
dψi
dx

dψj
dx

+ cψiψj

¶
dx+ βLψi(xa)ψj(xa) + βRψi(xb)ψj(xb)

F ei =

Z xb

xa
wq dx+ βLu

L
∞ψi(xa) + βRu

R
∞ψi(xb) + ψi(xa)Q1 + ψi(xb)Q2 (4c)

For example, for element-wise constant material and geometric properties and
linear interpolation, we obtainµ

ae

he

∙
1 −1
−1 1

¸
+
cehe
6

∙
2 1
1 2

¸
+

∙
βL 0
0 βR

¸¶½
ue1
ue2

¾

=

½
fe1
fe2

¾
+

½
Qe1
Qe2

¾
+

½
βLu

L
∞

βRu
R
∞

¾
(5)

Problem 4.9: Consider heat transfer in a plane wall of total thickness L. The
left surface is maintained at temperature T0 and the right surface is exposed to
ambient temperature T∞ with heat transfer coefficient β. Determine the temperature
distribution in the wall and heat input at the left surface of the wall for the following
data: L = 0.1 m, k = 0.01 W/(m ◦C), β = 25 W/(m2

◦
C), T0 = 50

◦C, and T∞ = 5◦C.
Solve for nodal temperatures and the heat at the left wall using (a) two linear finite
elements and (b) one quadratic element.

Solution: (a) For a mesh of two linear finite elements (h = h1 = h2 = L/2), the
assembled system of equations is

k

h

⎡⎣ 1 −1 0
−1 2 −1
0 −1 1

⎤⎦⎧⎨⎩
T1
T2
T3

⎫⎬⎭ =
⎧⎨⎩

Q11
Q12 +Q

2
1

Q22

⎫⎬⎭
The boundary conditions are

T1 = T0, Q
1
2 +Q

2
1 = 0, Q

2
2 + β (T3 − T∞) = 0
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The condensed equations are∙
0.4 −0.2
−0.2 25.2

¸½
T2
T3

¾
=

½
10
125

¾
Solving for the nodal temperatures T2 and T3, we obtain

T2 = 27.59
◦ C, T3 = 5.18

◦ C

The heat at the left end is calculated from the first equation of the assembled system

Q11 =
k

h
(T0 − T2) = 4.48 W

(a) For a mesh of one quadratic finite element (h = L), the system of equations
is

k

3h

⎡⎣ 7 −8 1
−8 16 −8
1 −8 7

⎤⎦⎧⎨⎩
T1
T2
T3

⎫⎬⎭ =
⎧⎨⎩
Q11
Q12
Q13

⎫⎬⎭
The boundary conditions are

T1 = T0, Q
1
2 = 0, Q

1
3 + β (T3 − T∞) = 0

The condensed equations are∙
0.53333 −0.26667
−0.26667 25.23333

¸½
T2
T3

¾
=

½
13.3333
126.6667

¾
Solving for the nodal temperatures T2 and T3, we obtain

T2 = 27.66
◦ C, T3 = 5.31

◦ C

The heat at the left end is calculated from the first equation of the system

Q11 =
k

3h
(7T0 − 8T2 + T3) = 4.47 W

Problem 4.10: An insulating wall is constructed of three homogeneous layers with
conductivities k1, k2, and k3 in intimate contact (see Fig. P4.10). Under steady-
state conditions, the temperatures of the media in contact at the left and right
surfaces of the wall are at ambient temperatures of TL∞ and TR∞, respectively, and film
coefficients βL and βR, respectively. Determine the temperatures when the ambient
temperatures T0 and T5 and the (surface) are known. Assume that there is no internal
heat generation and that the heat flow is one-dimensional (∂T/∂y = 0).
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h1 h2 h3

Air at temperature, T∞ = 35o C
Film coefficient, βR = 15 W/(m2. °K)
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k3= 70 W/(m. ºC)
h1= 50 mm
h2= 35 mm
h3= 25 mm

T∞ = 100o C
βL = 10 W/(m2. °K)

L

R

60 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

Fig. P4.10

Solution: The assembled set of equations are:⎡⎢⎢⎢⎢⎣
k1
h1

− k1h1 0 0

− k1h1
k1
h1
+ k2

h2
− k2h2 0

0 − k2h2
k2
h2
+ k3

h3
− k3h3

0 0 − k3h3
k3
h3

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩

Q11
Q12 +Q

2
1

Q22 +Q
3
1

Q32

⎫⎪⎪⎬⎪⎪⎭
The values of ke and he are: k1 = 50, k2 = 30, k3 = 70, h1 = 0.05, h2 = 0.035, and
h3 = 0.025. The boundary conditions are

Q11 = −βL
³
U1 − TL∞

´
, Q12 +Q

2
1 = 0, Q

2
2 +Q

3
1 = 0, Q

3
2 = −βR

³
U4 − TR∞

´
where βL = 10, T

L
∞ = 100, βR = 15 and T

R
∞ = 35. Thus we have⎡⎢⎢⎢⎢⎣

k1
h1
+ βL − k1h1 0 0

− k1h1
k1
h1
+ k2

h2
− k2h2 0

0 − k2h2
k2
h2
+ k3

h3
− k3h3

0 0 − k3h3
k3
h3
+ βR

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
100
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
βLT

L
∞
0
0

βRT
R
∞

⎫⎪⎪⎬⎪⎪⎭
The unknown nodal temperatures can be determined from the above equations.
Substituting all the numerical values, we obtain

103

⎡⎢⎢⎣
1.010 −1.000 0.000 0.000
−1.000 1.857 −0.857 0.000
0.000 −0.857 3.657 −2.800
0.000 0.000 −2.800 2.815

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
1, 000
0
0
525

⎫⎪⎪⎬⎪⎪⎭
and the solution is U1 = 61.582, U2 = 61.198

◦C, U3 = 60.749◦C, and U4 = 60.612◦C.
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h1 h2 h3

Air at temperature, T∞ = 35o C
Film coefficient, βR = 15 W/(m2. °K)

k1 k3
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k2= 30 W/(m. ºC)
k3= 70 W/(m. ºC)
h1= 50 mm
h2= 35 mm
h3= 25 mm

T0 = 100o C
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New Problem 4.2: Determine the nodal temperature field in a composite wall
(see Figure P4.10 but with different data). Use the minimum number of linear finite
elements to solve the problem. What is the heat flux at node 1? The governing
differential equation and convection boundary condition are of the form:

− d
dx

µ
k
dT

dx

¶
= 0, k

dT

dx
+ β (T − T∞) = 0

Solution: From the figure it is clear that we should use three linear elements. The
element equation is given by

ke
he

∙
1 −1
−1 1

¸½
ue1
ue2

¾
=

½
Qe1
Qe2

¾

Note that there is no internal heat generation (f = 0). The assembled equations of
the three-element mesh are given by⎡⎢⎢⎢⎢⎣

k1
h1

− k1h1 0 0

− k1h1
k1
h1
+ k2

h2
− k2h2 0

0 − k2h2
k2
h2
+ k3

h3
− k3h3

0 0 − k3h3
k3
h3

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩

Q11
Q12 +Q

2
1

Q22 +Q
3
1

Q32

⎫⎪⎪⎬⎪⎪⎭
The values of ke and he are given as follows:

k1 = 50, k2 = 30, k3 = 70, h1 = 5, h2 = 3.5, h3 = 2.5

The boundary conditions are

U1 = T (0) = 100, Q
1
2 +Q

2
1 = 0, Q

2
2 +Q

3
1 = 0, Q

3
2 = −β (U4 − T∞)
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where β = 15 and T∞ = 35. Thus we have⎡⎢⎢⎢⎢⎣
k1
h1

− k1h1 0 0

− k1h1
k1
h1
+ k2

h2
− k2h2 0

0 − k2h2
k2
h2
+ k3
h3

− k3h3
0 0 − k3h3

k3
h3
+ β

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
100
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
Q11
0
0

βT∞

⎫⎪⎪⎬⎪⎪⎭
The unknown nodal temperatures can be determined from the condensed equations⎡⎢⎣

k1
h1
+ k2

h2
− k2h2 0

− k2h2
k2
h2
+ k3

h3
− k3h3

0 − k3h3
k3
h3
+ β

⎤⎥⎦
⎧⎨⎩
U2
U3
U4

⎫⎬⎭ =
⎧⎪⎨⎪⎩
100

³
k1
h1

´
0

βT∞

⎫⎪⎬⎪⎭
Substituting all the numerical values, we obtain⎡⎣ 10 + 8.571 −8.571 0

−8.571 8.571 + 28 −28
0 −28 28 + 15

⎤⎦⎧⎨⎩
U2
U3
U4

⎫⎬⎭ =
⎧⎨⎩
1000
0
525

⎫⎬⎭
and the solution is U2 = 79.63

◦C, U3 = 55.86◦C, and U4 = 48.58◦C. The heat at node
1 is given by [(Q11)def = (Q

1
1)equil]

Q11 = (100− U2) 10 = 203.7W/cm2

New Problem 4.3: The energy equation for heat conduction in a circular disc of
radius R is given by (an axisymmetric, one-dimensional problem)

−1
r

d

dr

µ
r
dθ

dr

¶
= 2 , 0 < r < R (1)

and the boundary conditions are

r
dθ

dr
= 0 at r = 0 and r

dθ

dr
+ θ = 1 at r = 1 (2)

where θ is the non-dimensional temperature, r is the radial coordinate, and R = 1
is the radius of the disc. Use two linear finite elements of equal length to determine
the unknown temperatures. It is sufficient to give the condensed equations for the
unknown nodal temperatures.

Solution: The finite element model of the equation is given by

[Ke]{θe} = {fe}+ {Qe} (3)
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where

Ke
ij =

Z rb

ra
r
dψi
dr

ψj
dr
dr, fei =

Z rb

ra
2rψi dr (4)

For the choice of linear interpolation, we note that (see the formula sheet for the
interpolation functions)

Z rb

ra
r dr =

r2b − r2a
2

=
(rb + ra)he

2
,
dψ1
dr

= − 1
he
,
dψ2
dr

=
1

he

fe1 = 2

Z he

0
(ra + r̄)

µ
1− r̄

he

¶
dr̄

= 2

Ã
rahe +

h2e
2
− ra

he
2
− h

2
e

3

!
=
he
3
(3ra + he)

fe2 = 2

Z he

0
(ra + r̄)

r̄

he
dr̄ = 2

Ã
ra
he
2
+
h2e
3

!
=
he
3
(3ra + 2he)

Hence, we have (for any element)

[Ke] =
rb + ra
2he

∙
1 −1
−1 1

¸
, {fe} = he

3

½
3ra + he
3ra + 2he

¾
(5)

Thus element 1 and 2 coefficient matrices are given by (h = 1/2)

[K(1)] =

∙
0.5 −0.5
−0.5 0.5

¸
, {f (1)} = 1

6

½
0.5
1.0

¾
[K(2)] =

∙
1.5 −1.5
−1.5 1.5

¸
, {f (2)} = 1

6

½
2.0
2.5

¾
(6)

The assembled equations are given by⎡⎣ 0.5 −0.5 0
−0.5 0.5 + 1.5 −1.5
0 −1.5 1.5

⎤⎦⎧⎨⎩
U1
U2
U3

⎫⎬⎭ =
⎧⎨⎩

Q11
Q12 +Q

2
1

Q22

⎫⎬⎭+ 16
⎧⎨⎩

0.5
1.0 + 2.0
2.5

⎫⎬⎭ (7)

The boundary conditions are: Q11 = 0, Q12 + Q
2
1 = 0, and Q22 + U3 = 1. The final

equations for the unknown temperatures (i.e., the condensed equations) are⎡⎣ 0.5 −0.5 0
−0.5 2.0 −1.5
0 −1.5 2.5

⎤⎦⎧⎨⎩
U1
U2
U3

⎫⎬⎭ = 1

6

⎧⎨⎩
0.5
3.0
8.5

⎫⎬⎭ (8)

which is to be solved for the three temperatures.
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New Problem 4.4: Consider the differential equation (corresponds to heat transfer
in a rod, in nondimensional form)

−d
2u

dx2
+ 400u = 0 for 0 < x < L = 0.05

with the boundary conditions

u(0) = 300,

µ
du

dx
+ 2u

¶
|x=L = 0

Use two linear finite elements to determine the temperatures at x = L/2 and x = L.
You must at least set up the final condensed equations for the nodal unknowns.

Solution: For a mesh of two linear elements (h1 = h2 = h = L/2 = 0.025 m), the
assembled equations are⎛⎝1

h

⎡⎣ 1 −1 0
−1 2 −1
0 −1 1

⎤⎦+ 400h
6

⎡⎣ 2 1 0
1 4 1
0 1 2

⎤⎦⎞⎠⎧⎨⎩
U1
U2
U3

⎫⎬⎭ =
⎧⎨⎩

Q11
Q12 +Q

2
1

Q22

⎫⎬⎭
The boundary conditions require U1 = 300, Q

1
2+Q

2
1 = 0, and Q

2
2 = −2U3. Hence,

we have ⎛⎝⎡⎣ 40 −40 0
−40 80 −40
0 −40 40

⎤⎦+ 10
6

⎡⎣ 2 1 0
1 4 1
0 1 2

⎤⎦⎞⎠⎧⎨⎩
U1
U2
U3

⎫⎬⎭ =
⎧⎨⎩

Q11
0
−2U3

⎫⎬⎭
and the condensed equations are∙

86.667 −38.333
−38.333 43.333 + 2

¸½
U2
U3

¾
=

½
38.333× 300

0

¾

Problem 4.11: Rectangular fins are used to remove heat from the surface of a body
by conduction along the fins and convection from the surface of the fins into the
surroundings. The fins are 100 mm long, 5 mm wide and 1 mm thick, and made
of aluminum with thermal conductivity k = 170 W/(m.K). The natural convection
heat transfer coefficient associated with the surrounding air is β = 35 W/(m2· K)
and the ambient temperature is T∞ = 20◦ C. Assuming that the heat transfer is
one dimensional along the length of the fins and that the heat transfer in each fin is
independent of the others, determine the temperature distribution along the fins, and
the heat removed from each fin by convection. Use (a) four linear elements, and (b)
two quadratic elements. Set up only the condensed equations for the unknown nodal
temperatures and heats.
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Solution: This problem differs from that of Example 4.3.2 only in the data specified
(only the values of k and β differ). The data of the problem is

k = 170 W/m ·◦ C, β = 35 W/m2 ·◦ C, T0 = 100◦C, T∞ = 20◦C

L = 100 mm, t = 1 mm, b = 5 mm

(a) For the mesh of four linear elements, we have

kA

h
=
170× 5× 10−6
25× 10−3 = 0.034

βPh

6
=
35× 12× 10−3 × 25× 10−3

6
= 0.00175

βPT∞h = 35× 12× 10−3 × 20× 25× 10−3 = 0.21
βAT∞ = 35× 5× 10−6 × 20 = 0.0035

α = 6
A

Ph
=

6× 5
12× 25 = 0.1

The condensed equations for the unknown nodal temperatures become

10−1

⎡⎢⎢⎣
0.7500 −0.3225 0.0000 0.0000
−0.3225 0.7500 −0.3225 0.0000
0.0000 −0.3225 0.7500 −0.3225
0.0000 0.0000 −0.3225 0.3768

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U2
U3
U4
U5

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
3.4350
0.2100
0.2100
0.1085

⎫⎪⎪⎬⎪⎪⎭
The solution of these equations is (in ◦C)

U1 = 100.0, U2 = 66.573, U3 = 48.310, U4 = 39.264, U5 = 36.490

The heat input at node 1 (the total heat loss from the surface of the fin) is

Q11 = 1.1365 W

(b) The condensed equations are (h = 0.05 m)⎛⎜⎜⎝kA3h
⎡⎢⎢⎣
16 −8 0 0
−8 14 −8 1
0 −8 16 −8
0 1 −8 7

⎤⎥⎥⎦+ βPh

30

⎡⎢⎢⎣
16 2 0 0
2 8 2 −1
0 2 16 2
0 −1 2 4 + α

⎤⎥⎥⎦
⎞⎟⎟⎠
⎧⎪⎪⎨⎪⎪⎩
U2
U3
U4
U5

⎫⎪⎪⎬⎪⎪⎭

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
³
7kA
3h −

4βPh
30

´
T0

0
0

βAT∞

⎫⎪⎪⎪⎬⎪⎪⎪⎭+
βPT∞h

6

⎧⎪⎪⎨⎪⎪⎩
4
2
4
1

⎫⎪⎪⎬⎪⎪⎭
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where α = βA/(βPh/30) = 30A/Ph. We have

10−1

⎡⎢⎢⎣
1.0187 −0.4393 0.0000 0.0000
−0.4393 0.8493 −0.4393 0.0497
0.0000 −0.4393 1.0187 −0.4393
0.0000 0.0497 −0.4393 0.4264

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U2
U3
U4
U5

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩

4.6733
−0.3567
0.2800
0.0735

⎫⎪⎪⎬⎪⎪⎭
The solution of these equations is (in ◦C)

U1 = 100.0, U2 = 66.939, U3 = 48.836, U4 = 39.775, U5 = 37.015

The total heat loss by convection through the fin surface is calculated from
(βPh = 0.021)

Qtotal = Q
(1) +Q(2)

= 0.021

∙µ
100 + 4× 66.939 + 48.836

6
− 20

¶
+

µ
48.836 + 4× 39.775 + 37.015

2
− 20

¶¸
= 1.4754 W

The finite element solutions obtained with various meshes of linear and quadratic
finite elements are compared in Table P4.11. The convergence of the finite element
solutions with h (refined mesh of the same order element) and p (mesh of higher-order
element) refinements is clear from the results.

Table P4.11: Comparison of the finite element solutions of Problem 4.11.

x̄† No. of linear elements No. of quadratic elements
n = 2 n = 4 n = 8 n = 1 n = 2 n = 4

0.125 - - 81.045 - - 81.103
0.250 - 66.573 66.864 - 66.939 66.960
0.375 - - 56.348 - - 56.460
0.500 46.692 48.310 48.675 48.676 48.836 48.797
0.625 - - 43.246 - - 43.368
0.750 - 39.264 39.634 - 39.775 39.757
0.875 - - 37.557 - - 37.678
1.000 34.906 36.490 36.854 37.769 37.015 36.976

†x̄ = x/L.
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h1 h2 h3

k1

k2

k3 k4
Tsurface= 66 °C

k1= 150 W/(m. °C)
k2= 30 W/(m. °C)
k3= 70 W/(m. °C)
k4= 50 W/(m. °C)
h1= 25 mm
h2= 75 mm
h3= 50 mm
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Problem 4.12: Find the heat transfer per unit area through the composite wall
shown in Fig. P4.12. Assume one-dimensional heat flow.

Fig. P4.12

Solution: The assembled system of equations is⎡⎢⎢⎢⎢⎣
k1
h1

− k1h1 0 0

− k1h1
k1
h1
+ k2

h2
+ k3

h2
− k2h2 −

k3
h2

0

0 − k2h2 −
k3
h2

k2
h2
+ k3

h2
+ k4

h3
− k4h3

0 0 − k4h3
k4
h3

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩

Q11
Q12 +Q

2
1 +Q

3
1

Q22 +Q
3
2 +Q

4
1

Q42

⎫⎪⎪⎬⎪⎪⎭
with

k1
h1
= 6× 10−3, k2

h2
= 0.4× 10−3, k3

h2
= 0.9333× 10−3, k4

h3
= 10−3

The boundary conditions are

T1 = 370
◦ C, T4 = 66

◦ C, Q12 +Q
2
1 +Q

3
1 = 0, Q

2
2 +Q

3
2 +Q

4
1 = 0

Hence, the condensed equations are

∙
7.3333 −1.3333
−1.3333 2.3333

¸½
U2
U3

¾
=

(
370 k1h1
66 k4h3

)
=

½
2, 220
66

¾

whose solution is U2 = 343.57◦ C and U3 = 224.61◦ C. The heats at left and right
walls, respectively, are

Q11 =
k1
h1
(U1 − U2) = 158.6 W, Q42 =

k4
h3
(U4 − U3) = −158.6 W
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Problem 4.13: A steel rod of diameter D = 2 cm, length L = 5 cm, and thermal
conductivity k = 50 W/(m ·◦C) is exposed to ambient air at T∞ = 20◦C with a heat
transfer coefficient β = 100 W/(m2◦ C). If the left end of the rod is maintained at
temperature T0 = 320◦C, determine the temperatures at distances 25 mm and 50
mm from the left end, and the heat at the left end. The governing equation of the
problem is

−d
2θ

dx2
+m2θ = 0 for 0 < x < L

where θ = T−T∞, T is the temperature, andm2 = βP/Ak. The boundary conditions
are

θ(0) = T (0)− T∞ = 300◦C,
µ
dθ

dx
+

β

k
θ

¶ ¯̄̄̄
x=L

= 0

Use (a) two linear elements and (b) one quadratic element to solve the problem by
the finite element method. Compare the finite element nodal temperatures against
the exact values.

Solution: (a) For the mesh of two linear elements, the condensed equations are
(U1 = 300, Q

2
2 = −(β/k)U3 = −2U3),∙

86.667 −38.333
−38.333 43.333 + 2.0

¸½
U2
U3

¾
=

½
11, 500
1, 800

¾
The solution for the primary and secondary variables is given by

U1 = 300, U2 = 211.97, U3 = 179.24; (Q
1
1)def = 3521.1, (Q

1
1)equil = 4, 874.48

(b) For one quadratic element mesh we have (U1 = 300, Q
1
3 = −(β/k)U3 = −2U3),∙

117.33 −52.00
−52.00 49.333 + 2.0

¸½
U2
U3

¾
=

½
15, 600
0

¾
and the solution is given by U1 = 300, U2 = 213.07, U3 = 180.77, (Q

1
1)def = 4569.9.

The exact solution for the second set of boundary conditions is

θ(x) = θ(0)
coshN(L− x) + (β/Nk) sinhN(L− x)

coshNL+ (β/Nk) sinhNL

At the nodes we have θ(0.025) = 213.07, θ(0.05) = 180.77, Q11 ≡ −(dθ/dx)0 = 4569.9.

Problem 4.14: Find the temperature distribution in the tapered fin shown in Fig.
P4.14. Assume that the temperature at the root of the fin is 250◦F, the conductivity
k = 120 Btu/(h ft ◦F), and the film coefficient β = 15 Btu/(h ft2◦F), and use
three linear elements. The ambient temperature at the top and bottom of the fin is
T∞ = 75◦F.
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Fig. P4.14

Solution: The governing differential equation for this problem can be derived by
making the following assumptions: The fin thickness at the base x = L = 3 is small
enough so that the temperature is uniform in the transverse direction (i.e., y-direction)
to the fin; the heat transfer from the fin edges (see the cross hatched part) may be
neglected in comparison to that from the top surface of the fin (into the plane of the
paper); and there is no temperature variation along the z-direction (into the plane
of the paper). Then the equation governing the one—dimensional heat transfer in the
fin is given by

− d
dx

µ
x
dT

dx

¶
+N2(T − T∞) = 0

where N2 = (β/k)[1 + (L/Y )2]0.5. The boundary conditions are: (xdT/dx)(0) = 0
and T (L) = T0. Here we have L=3 in., Y=0.125 in., k= 120 BTu/(hr.ft.◦F), and
β=15 BTu/(hr.ft2.◦F). Hence, N2 = (15/120)

p
1 + (3/0.125)2 = 3.0026. Therefore,

we have

Ke
ij =

Z xb

xa

µ
x
dψi
dx

dψj
dx

+N2ψiψj

¶
dx

fei =

Z xb

xa
N2T∞ψi dx

The element coefficient matrix needed here is already evaluated and recorded in
Eq.(3.2.35), page 122 (set a = 1 and c = N2). The assembled coefficient matrix
for three-element mesh is

[K] =
1

2

⎡⎢⎢⎣
1 −1 0 0
−1 4 −3 0
0 −3 8 −5
0 0 −5 5

⎤⎥⎥⎦+ N2h

6

⎡⎢⎢⎣
2 1 0 0
1 4 1 0
0 1 4 1
0 0 1 2

⎤⎥⎥⎦
The assembled source vector is given by

{F} = N2T∞h

2

⎧⎪⎪⎨⎪⎪⎩
1
2
2
1

⎫⎪⎪⎬⎪⎪⎭
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The assembed equations of the three linear element mesh (he = 1/12 ft., T∞ = 75)
are ⎡⎢⎢⎣

0.58341 −0.45830 0 0
−0.45830 2.1668 −1.4583 0

0 −1.4583 4.1668 −2.4583
0 0 −2.4583 2.5834

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩
9.3831
18.766
18.766
9.3831

⎫⎪⎪⎬⎪⎪⎭+
⎧⎪⎪⎨⎪⎪⎩

Q11
Q12 +Q

2
1

Q22 +Q
3
1

Q32

⎫⎪⎪⎬⎪⎪⎭
Using the boundary conditions, Q11 = 0 and U4 = 250, we obtain the solution,

T1(tip) = 166.23
◦F, T2 = 191.14

◦F, T3 = 218.89
◦F, (Q32)def = 93.329BTU/hr.

Problem 4.15: Consider steady heat conduction in a wire of circular cross-section
with an electrical heat source. Suppose that the radius of the wire is R0, its electrical
conductivity is Ke (Ω

−1/cm), and it is carrying an electric current density of I (A/cm
2). During the transmission of an electric current, some of the electrical energy is
converted into thermal energy. The rate of heat production per unit volume is given
by qe = I2/Ke. Assume that the temperature rise in the wire is sufficiently small
that the dependence of the thermal or electric conductivity on temperature can be
neglected. The governing equations of the problem are

−1
r

d

dr

µ
rk
dT

dr

¶
= qe for 0 ≤ r ≤ R0,

µ
rk
dT

dr

¶ ¯̄̄̄
r=0

= 0, T (R0) = T0

Determine the distribution of temperature in the wire using (a) two linear elements
and (b) one quadratic element, and compare the finite element solution at eight equal
intervals with the exact solution

T (r) = T0 +
qeR

2
0

4k

"
1−

µ
r

R0

¶2#

Also, determine the heat flow Q = −2πR0k(dT/dr)|R0 at the surface using (i) the
temperature field and (ii) the balance equations.

Solution: The finite element model is the same as in Eqs. (3.4.5a) and (3.4.5b) on
page 148 with a = kr and f = qe = I2/Ke. The element equations are given by
(3.4.7) and (3.4.8) for linear and quadratic elements, respectively.

(a) The assembled equations of the mesh of two linear elements is (h = 0.5R0)

πk

⎡⎣ 1.0 −1.0 0
−1.0 1.0 + 3.0 −3.0
0 −3.0 3.0

⎤⎦⎧⎨⎩
U1
U2
U3

⎫⎬⎭ = πqeh
2

3

⎧⎨⎩
1.0

2.0 + 4.0
5.0

⎫⎬⎭+
⎧⎨⎩

Q11
Q12 +Q

2
1

Q22

⎫⎬⎭
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The boundary conditions are

Q11 = 0, Q
1
2 +Q

2
1 = 0, U3 = T0

Hence, the condensed equations are

k

∙
1.0 −1.0
−1.0 4.0

¸½
U1
U2

¾
=
qeR

2
0

12

½
1.0

6.0 + αT0

¾
where α = 36k/(qeR

2
0). Solving for the nodal values of the temperature, we obtain

U1 =
5qeR

2
0

18k
+ T0, U2 =

7qeR
2
0

36k
+ T0

The heat at node 3 is

Q22 = 3πk(U3 − U2)−
5πqeR

2
0

12
= −πqeR20

(b) The finite equations of the mesh of one quadratic element is (h = R0)

πk

3

⎡⎣ 3.0 −4.0 1.0
−4.0 16.0 −12.0
1.0 −12.0 11.0

⎤⎦⎧⎨⎩
U1
U2
U3

⎫⎬⎭ = πqeR
2
0

3

⎧⎨⎩
0.0
2.0
1.0

⎫⎬⎭+
⎧⎨⎩
Q11
Q12
Q13

⎫⎬⎭
The boundary conditions are

Q11 = 0, Q
1
2 = 0, U3 = T0

Hence, the condensed equations are

k

∙
3.0 −4.0
−4.0 16.0

¸½
U1
U2

¾
= qeR

2
0

½ −αT0
2.0 + βT0

¾
where α = k/(qeR

2
0) and β = 12k/(qeR

2
0). Solving for the nodal values of the

temperature, we obtain

U1 =
qeR

2
0

4k
+ T0, U2 =

3qeR
2
0

16k
+ T0

which coicides with the exact solution at the nodes. The heat at node 3 is

Q13 =
πk

3
(U1 − 12U2 + 11U3)−

πqeR
2
0

3
= −πqeR20

which also coincides with the exact value.
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Problem 4.16: Consider a nuclear fuel element of spherical form, consisting of
a sphere of “fissionable” material surrounded by a spherical shell of aluminum
“cladding” as shown in Fig. P4.16. Nuclear fission is a source of thermal energy,
which varies non-uniformly from the center of the sphere to the interface of the fuel
element and the cladding. We wish to determine the temperature distribution in the
nuclear fuel element and the aluminum cladding.

The governing equations for the two regions are the same, with the exception
that there is no heat source term for the aluminum cladding. We have

− 1
r2
d

dr

µ
r2k1

dT1
dr

¶
= q for 0 ≤ r ≤ RF

− 1
r2
d

dr

µ
r2k2

dT2
dr

¶
= 0 for RF ≤ r ≤ RC

where subscripts 1 and 2 refer to the nuclear fuel element and cladding, respectively.
The heat generation in the nuclear fuel element is assumed to be of the form

q1 = q0

"
1 + c

µ
r

RF

¶2#

where q0 and c are constants depending on the nuclear material. The boundary
conditions are

kr2
dT1
dr

= 0 at r = 0

T1 = T2 at r = RF , and T2 = T0 at r = RC

Fig. P4.16
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(a) Develop the finite element model, (b) give the form of the assembled equations,
and (c) indicate the specified primary and secondary variables at the nodes. Use
two linear elements to determine the finite element solution for the temperature
distribution, and compare the nodal temperatures with the exact solution

T1 − T0 =
q0R

2
F

6k1

("
1−

µ
r

RF

¶2#
+
3

10
c

"
1−

µ
r

RF

¶4#)

+
q0R

2
F

3k2
(1 +

3

5
c)

µ
1− RF

RC

¶
T2 − T0 =

q0R
2
F

3k2
(1 +

3

5
c)

µ
RF
r
− RF
RC

¶

Solution: This problem is designed to test the student’s understanding of the finite
element modeling of dissimilar material problems.

(a) The element coefficients are,

Ke
ij = (2π)

2
Z rb

ra
kr2

dψi
dr

dψj
dr

dr

F ei = (2π)
2
Z rb

ra
qer

2ψi dr +Q
e
i

The assembled equations are of the form,⎡⎣K1
11 K1

12 0
K1
21 K1

22 +K
2
11 K2

12

0 K2
21 K2

22

⎤⎦⎧⎨⎩
U1
U2
U3

⎫⎬⎭ =
⎧⎨⎩

Q11
Q12 +Q

2
1

Q22

⎫⎬⎭
The specified primary and secondary variables are:

Q11 = 0, u
1
2 = u

2
1 ≡ U2, Q12 +Q21 = 0, u22 ≡ U3 = T0

Fluid Mechanics

Problem 4.17: Consider the flow of a Newtonian viscous fluid on an inclined flat
surface, as shown in Fig. P4.17. Examples of such flow can be found in wetted-wall
towers and the application of coatings to wallpaper rolls. The momentum equation,
for a fully developed steady laminar flow along the z coordinate, is given by

−µd
2w

dx2
= ρg cosβ

where w is the z component of the velocity, µ is the viscosity of the fluid, ρ is the
density, g is the acceleration due to gravity, and β is the angle between the inclined
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surface and the vertical. The boundary conditions associated with the problem are
that the shear stress is zero at x = 0 and the velocity is zero at x = L:µ

dw

dx

¶ ¯̄̄̄
x=0

= 0 w(L) = 0

Use (a) two linear finite elements of equal length and (b) one quadratic finite element
in the domain (0, L) to solve the problem and compare the two finite element solutions
at four points x = 0, 1

4L,
1
2L, and

3
4L of the domain with the exact solution

we =
ρgL2 cosβ

2µ

"
1−

µ
x

L

¶2#

Evaluate the shear stress (τxz = −µ dw/dx) at the wall using (i) the velocity fields
and (ii) the equilibrium equations, and compare with the exact value.

Fig. P4.17

Solution: (a) The assembled equations of the mesh of two linear elements is given
by (h = L/2)

µ

h

⎡⎣ 1 −1 0
−1 2 −1
0 −1 1

⎤⎦⎧⎨⎩
U1
U2
U3

⎫⎬⎭ = ρgh cosβ

2

⎧⎨⎩
1
2
1

⎫⎬⎭+
⎧⎨⎩

Q11
Q12 +Q

2
1

Q22

⎫⎬⎭
The boundary conditions are:

U3 = 0, Q
1
1 = 0, Q

1
2 +Q

2
1 = 0

Solving the condensed equations (i.e. the first two equations), we obtain

U1 =
f0L

2

2µ
, U2 =

3f0L
2

8µ
(f0 = ρg cosβ)
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The secondary variable is given by (τxz = −Q22)

(Q22)def = −
3

4
f0L, (Q

2
2)equil = −f0L

(b) The equations of the mesh of one quadratic element is given by (h = L)

µ

3h

⎡⎣ 7 −8 1
−8 16 −8
1 −8 7

⎤⎦⎧⎨⎩
U1
U2
U3

⎫⎬⎭ = ρgh cosβ

6

⎧⎨⎩
1
4
1

⎫⎬⎭+
⎧⎨⎩
Q11
Q12
Q13

⎫⎬⎭
Solving the condensed equations (i.e. the first two equations), we obtain

U1 =
f0L

2

2µ
, U2 =

3f0L
2

8µ
(f0 = ρg cosβ)

The secondary variable is given by (τxz = −Q22)

(Q13)def = (Q
1
3)equil = −f0L

The solution obtained by both meshes is exact at the nodes; but at points other
than the nodes the solution differs slightly from the exact solution.

Problem 4.18: Consider the steady laminar flow of a viscous fluid through a long
circular cylindrical tube. The governing equation is

−1
r

d

dr

µ
rµ
dw

dr

¶
=
P0 − PL
L

≡ f0

where w is the axial (i.e. z) component of velocity, µ is the viscosity, and f0 is
the gradient of pressure (which includes the combined effect of static pressure and
gravitational force). The boundary conditions areµ

r
dw

dr

¶ ¯̄̄̄
r=0

= 0 w(R0) = 0

Using the symmetry and (a) two linear elements, (b) one quadratic element, determine
the velocity field and compare with the exact solution at the nodes:

we(r) =
f0R

2
0

4µ

"
1−

µ
r

R0

¶2#

Solution: (a) For the two element mesh of linear elements, the solution is the same
as given in Example 4.3.4. The finite element and exact values at the nodes are:

U1 =
5

18
α, U2 =

7

36
α, u(0) =

1

4
α, u(R0/2) =

3

16
α
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where α = f0R
2
0/µ.

(b) The equations of the mesh of one quadratic element is given by (h = R0)

πµ

3

⎡⎣ 3 −4 1
−4 16 −12
1 −12 11

⎤⎦⎧⎨⎩
U1
U2
U3

⎫⎬⎭ = πf0R
2
0

3

⎧⎨⎩
0
2
1

⎫⎬⎭+
⎧⎨⎩
Q11
Q12
Q13

⎫⎬⎭
The condensed equations are obtained by deleting the last equation, and the solution
given by these equations coincide with the exact solution at the nodes:

U1 =
1

4
α, U2 =

3

16
α

where α = f0R
2
0/µ.

Problem 4.19: In the problem of the flow of a viscous fluid through a circular
cylinder (Problem 4.18), assume that the fluid slips at the cylinder wall; i.e. instead
of assuming that w = 0 at r = R0, use the boundary condition that

kw = −µdw
dr

at r = R0

in which k is the “coefficient of sliding friction.” Solve the problem with two linear
elements.

Solution: This problem differs from that in Example 4.3.4 only in the boundary
conditions. Here we have

U1 = 0, Q
2
2 = −kR0U3

For the mesh of two linear elements we have,

πµ

⎡⎣ 1 −1 0
−1 4 −3
0 −3 3

⎤⎦⎧⎨⎩
U1
U2
U3

⎫⎬⎭ = πf0R
2
0

12

⎧⎨⎩
1
6
5

⎫⎬⎭+
⎧⎨⎩

Q11
Q12 +Q

2
1

−kR0U3

⎫⎬⎭
The solution can be obtained by Cramer’s rule:

U1 = (c+
5

18
)α, U2 = (c+

7

36
)α, U3 = cα, c =

πµ

kR0

where α = f0R
2
0/µ. Note that in the limit c approaches zero, we obtain the solution

to Problem 3.24.

Problem 4.20: Consider the steady laminar flow of a Newtonian fluid with constant
density in a long annular region between two coaxial cylinders of radii Ri and R0 (see
Fig. P4.20). The differential equation for this case is given by

−1
r

d

dr

µ
rµ
dw

dr

¶
=
P1 − P2
L

≡ f0
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where w is the velocity along the cylinders (i.e., the z component of velocity), µ is
the viscosity, L is the length of the region along the cylinders in which the flow is
fully developed, and P1 and P2 are the pressures at z = 0 and z = L, respectively
(P1 and P2 represent the combined effect of static pressure and gravitational force).
The boundary conditions are

w = 0 at r = R0 and Ri

Solve the problem using (a) two linear elements and (b) one quadratic element, and
compare the finite element solutions with the exact solution at the nodes:

we(r) =
f0R

2
0

4µ

"
1−

µ
r

R0

¶2
+
1− k2
ln(1/k)

ln

µ
r

R0

¶#

where k = Ri/R0. Determine the shear stress τrz = −µ dw/dr at the walls using
(i) the velocity field and (ii) the equilibrium equations, and compare with the exact
values. (Note that the steady laminar flow of a viscous fluid through a long cylinder
or a circular tube can be obtained as a limiting case of k → 0.)

Fig. P4.20

Solution: (a) For the mesh of two linear elements we have

πµ

L

⎡⎣ α −α 0
−α α+ β −β
0 −β β

⎤⎦⎧⎨⎩
U1
U2
U3

⎫⎬⎭ = πf0L

12

⎧⎨⎩
5Ri +R0
6(Ri +R0)
Ri + 5R0

⎫⎬⎭+
⎧⎨⎩

Q11
Q12 +Q

2
1

Q22

⎫⎬⎭
where L = (R0 −Ri),α = (3Ri +R0) and β = (Ri + 3R0). The boundary conditions
are: U1 = U3 = 0. Hence we have the solution,

U2 =
1

4

f0L
2

µ
, (τrz)def (Ri) = −

1

2
f0L, (τrz)def (R0) =

1

2
f0L

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.



x

y µ2

µ1

Interface

Less dense and 
  less viscous fluid

Denser and 
  more viscous fluid

ρ2

ρ1

78 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

(b) For the mesh of one quadratic element we have

πµ

3L

⎡⎣ 3R0 + 11Ri −4R0 − 12Ri R0 +Ri
−4R0 − 12Ri 16(R0 +Ri) −12R0 − 4Ri
R0 +Ri −12R0 − 4Ri 11R0 + 3Ri

⎤⎦⎧⎨⎩
U1
U2
U3

⎫⎬⎭
=

πf0L

3

⎧⎨⎩
Ri

2Ri + 2R0
R0

⎫⎬⎭+
⎧⎨⎩
Q11
Q12
Q13

⎫⎬⎭
The solution is (L = R0 −Ri),

U2 =
1

8

f0L
2

µ
, (τrz)def (Ri) = −

1

2
f0L, (τrz)def (R0) =

1

2
f0L

Problem 4.21: Consider the steady laminar flow of two immiscible incompressible
fluids in a region between two parallel stationary plates under the influence of a
pressure gradient. The fluid rates are adjusted such that the lower half of the region
is filled with Fluid I (the denser and more viscous fluid) and the upper half is filled
with Fluid II (the less dense and less viscous fluid), as shown in Fig. P4.21. We
wish to determine the velocity distributions in each region using the finite element
method.

The governing equations for the two fluids are

−µ1
d2u1
dx2

= f0, −µ2
d2u2
dx2

= f0

where f0 = (P0 − PL)/2b is the pressure gradient. The boundary conditions are

u1(−b) = 0 u2(b) = 0, u1(0) = u2(0)

Solve the problem using four linear elements, and compare the finite element solutions
with the exact solution at the nodes

ui =
f0b

2

2µi

"
2µi

µ1 + µ2
+
µ1 − µ2
µ1 + µ2

y

b
−
µ
y

b

¶2#
(i = 1, 2)

Fig. P4.21

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.



r

L

• • • • • • •
r L

21 3 4 5 6 7

SOLUTIONS MANUAL 79

Solution: The assembled finite element equations are (h = b/2)

1

h

⎡⎢⎢⎢⎢⎣
µ2 −µ2 0 0 0
−µ2 2µ2 −µ2 0 0
0 −µ2 µ2 + µ1 −µ1 0
0 0 −µ1 2µ1 −µ1
0 0 0 −µ1 µ1

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
U1
U2
U3
U4
U5

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Q11
Q12 +Q

2
1

Q22 +Q
3
1

Q32 +Q
4
1

Q42

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭+
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f11
f12 + f

2
1

f22 + f
3
1

f32 + f
4
1

f42

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
After imposing the boundary conditions, we obtain the following condensed equations:

2

b

⎡⎣ 2µ2 −µ2 0
−µ2 µ2 + µ1 −µ1
0 −µ1 2µ1

⎤⎦⎧⎨⎩
U2
U3
U4

⎫⎬⎭ = f0b

2

⎧⎨⎩
1
1
1

⎫⎬⎭
Solving for (U2, U3, U4), we obtain⎧⎨⎩

U2
U3
U4

⎫⎬⎭ = f0b
2

8µ1µ2(µ1 + µ2)

⎡⎣ (2µ2 + µ1)µ1 2µ1µ2 µ1µ2
2µ1µ2 4µ1µ2 2µ1µ2
µ1µ2 2µ1µ2 (µ2 + 2µ1)µ2

⎤⎦⎧⎨⎩
1
1
1

⎫⎬⎭
=

f0b
2

8µ1µ2(µ1 + µ2)

⎧⎨⎩
5µ1µ2 + µ

2
1

8µ1µ2
5µ1µ2 + µ

2
2

⎫⎬⎭
which coincides with the exact solution at the nodes.

Problem 4.22: The governing equation for an unconfined aquifer with flow in the
radial direction is given by the differential equation

−1
r

d

dr

µ
rk
du

dr

¶
= f

where k is the coefficient of permeability, f the recharge, and u the piezometric head.
Pumping is considered to be a negative recharge. Consider the following problem.
A well penetrates an aquifer and pumping is performed at r = 0 at a rate Q = 150
m2/h. The permeability of the aquifer is k = 25 m3/h. A constant head u0 = 50
m exists at a radial distance L = 200 m. Determine the piezometric head at radial
distances of 0, 10, 20, 40, 80, and 140 m (see Fig. P4.22). You are required to set up
the finite element equations for the unknowns using a nonuniform mesh of six linear
elements.

Fig. P4.22
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Solution: This equation is a special case of Eqs. (3.4.1) with a(r) = kr and f = 0
(no distributed source in the problem). Hence, the element equations are given by
Eqs. (3.4.5a,b); the coefficient matrix for the linear element is given by Eq. (3.4.7)
with ae = k:

[K1] = πk

∙
1 −1
−1 1

¸
, [K2] = πk

∙
3 −3
−3 3

¸
[K3] = πk

∙
3 −3
−3 3

¸
, [K4] = πk

∙
3 −3
−3 3

¸
[K5] =

πk

3

∙
11 −11
−11 11

¸
, [K6] =

πk

3

∙
17 −17
−17 17

¸
All element vectors {fe} = {0}. The assembly of the element equations is
straightforward. The boundary conditions require the sums of all Q’s be zero and
Q11 = −150 m2/hr and U7 = u0 = 50m. The solution (solved using FEM1D) is,

U1 = 45.322, U2 = 47.232, U3 = 47.869, U4 = 48.505

U5 = 49.142, U6 = 49.663, U7 = 50.000

(Q62)equil = 149.985, (Q
6
2)def = 2πkr

µ
U7 − U6
h

¶
= 176.45

The exact solution is given by (which has a singularity at r = 0)

u(r) =
Q

2πk
log

µ
r

L

¶
+ u0

where Q = −150, k = 25, u0 = 50, L = 200.

Problem 4.23: Consider a slow, laminar flow of a viscous substance (for example,
glycerin solution) through a narrow channel under controlled pressure drop of 150
Pa/m. The channel is 5 m long (flow direction), 10 cm high, and 50 cm wide. The
upper wall of the channel is maintained at 50◦C while the lower wall is maintained
at 25◦C. The viscosity and density of the substance are temperature dependent, as
given in Table P4.33. Assuming that the flow is essentially one dimensional (justified
by the dimensions of the channel), determine the velocity field and mass flow rate of
the fluid through the channel.

Solution: The material properties given in Table P4.23(a) suggest that we use a
five element mesh of linear elements to analyze the problem. In reality, the property
variation is continuous, µ = µ(T ) and ρ = ρ(T ). Since we only have the point data,
we can use the data to either generate a continuous functions µ(T ) and ρ(T ) using
regression/interpolation or just assume element-wise constant properties. In view of
the mild variation of the properties with the temperature, we shall use element-wise
constant properties in the analysis. The element-wise constant properties are listed
in Table P4.23(b).
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Table P4.23(a): Properties of the viscous substance of Problem 4.23.

y Temp. Viscosity Density
(m) (◦C) [kg/(m· s)] (kg/m3)

0.00 50 0.10 1233
0.02 45 0.12 1238
0.04 40 0.20 1243
0.06 35 0.28 1247
0.08 30 0.40 1250
0.10 25 0.65 1253

Table P4.23(b): Element-wise constant properties of the viscous substance of
Problem 4.23.

Element Viscosity Density
[kg/(m· s)] (kg/m3)

5 0.110 1236
4 0.160 1241
3 0.240 1245
2 0.340 1249
1 0.525 1252

The governing equation of the problem is

− d
dy

µ
µ
du

dy

¶
= −dp

dx
(1)

where u = u(y) is the horizontal velocity and −dp/dx is the pressure drop across the
channel. The boundary conditions on u are provided by the requirement that fluid,
being viscous, does not slip past the fixed wall, i.e.,

u(0) = 0, u(0.1) = 0 (2)

Clearly, the governing equation is a special case of the model equation. Hence, we
have all the needed finite element equations to solve the problem. In particular, the
element equations associated with a linear finite element for the problem are

µe
he

∙
1 −1
−1 1

¸½
ue1
ue2

¾
=
fehe
2

½
1
1

¾
+

½
Qe1
Qe2

¾
(3)

where fe = 120 Pa/m, he = 0.02m, and values of µe are given in Table P4.23(b).

The assembled equations are given by⎡⎢⎢⎢⎢⎢⎢⎣

26.25 −26.25 0.00 0.00 0.00 0.00
−26.25 43.25 −17.00 0.00 0.00 0.00
0.00 −17.00 29.00 −12.00 0.00 0.00
0.00 0.00 −12.00 20.00 −8.00 0.00
0.00 0.00 0.00 −8.0 13.5 −5.50
0.00 0.00 0.00 0.00 −5.50 5.50

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U1
U2
U3
U4
U5
U6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
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=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1.2
2.4
2.4
2.4
2.4
1.2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q
(1)
1

Q
(1)
2 +Q

(2)
1

Q
(2)
2 +Q

(3)
1

Q
(3)
2 +Q

(4)
1

Q
(4)
2 +Q

(5)
1

Q
(5)
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4)

Solid and Structural Mechanics

Problem 4.24: The equation governing the axial deformation of an elastic bar in
the presence of applied mechanical loads f and P and a temperature change T is

− d
dx

∙
EA

µ
du

dx
− αT

¶¸
= f for 0 < x < L

where α is the thermal expansion coefficient, E the modulus of elasticity, and A
the cross-sectional area. Using three linear finite elements, determine the axial
displacements in a nonuniform rod of length 30 in., fixed at the left end and subjected
to an axial force P = 400 lb and a temperature change of 60◦F. Take A(x) = 6− 1

10x
in2, E = 30× 106 lb/in2, and α = 12× 10−6 /(in ◦F).

Solution: The weak form leads to the following definition of element coefficients,

Ke
ij =

Z xb

xa
EA

dψi
dx

dψj
dx

dx

F ei =

Z xb

xa
(f +EAαT )ψi dx+Q

e
i

For three linear element mesh, the condensed equations (U1 = 0, Q
3
2 = P = 400) are

given by (f=0 and h=10 in.)

106

⎡⎣ 30.0 −13.5 0
−13.5 24.0 −10.5
0 −10.5 10.5

⎤⎦⎧⎨⎩
U2
U3
U4

⎫⎬⎭ = 106
⎧⎨⎩
1.080
0.864
0.360

⎫⎬⎭+
⎧⎨⎩
0
0
P

⎫⎬⎭
The solution of these equations is

U2 = 0.13966 in., U3 = 0.23036 in., U4 = 0.26468 in.

Problem 4.25: Find the stresses and compressions in each section of the composite
member shown in Fig. P4.25. Use Es = 30 × 106 psi, Ea = 107 psi, Eb = 15 × 106
psi, and the minimum number of linear elements.
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2000 lb

16  in. 16  in.

2500 lb

2500 lb
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Fig. P4.25

Solution: The three element coefficient matrices are

[K(1)] =
8× 30× 106

16

∙
1 −1
−1 1

¸
; [K(2)] =

6× 10× 106
16

∙
1 −1
−1 1

¸

[K(3)] =
4× 15× 106

16

∙
1 −1
−1 1

¸
The assembly of three elements of equal length h1 = h2 = h3 = 16 in, we obtain

107

16

⎡⎢⎢⎣
24 −24 0 0
−24 24 + 6 −6 0
0 −6 6 + 6 −6
0 0 −6 6

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

P
(1)
1

P
(1)
2 + P

(2)
1

P
(2)
2 + P

(3)
1

P
(3)
2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
The boundary conditions are U1 = 0.0, P

(1)
2 + P

(2)
1 = 5, 000, P

(2)
2 + P

(3)
1 = 0, and

P
(3)
2 = −2, 000 lb. The condensed equations become

107

16

⎡⎣ 30 −6 0
−6 12 −6
0 −6 6

⎤⎦⎧⎨⎩
U2
U3
U4

⎫⎬⎭ =
⎧⎨⎩

5, 000
0

−2, 000

⎫⎬⎭
whose solution is U2 = 0.2× 10−3 in., U3 = −0.3333× 10−3 in., U4 = −0.8667× 10−3
in. Thus, the steel bar has an elongation of 0.0002 in, the aluminum has a compression
of 0.0005333 in, and the brass has compression of 0.0005333 in. The forces in each
member can be computed from the element equations:

P
(1)
2 = 3, 000 lb, P

(2)
2 = −2, 000 lb, P

(2)
2 = −2, 000 lb

Hence, the stresses are

σs =
3000

8
= 375 psi, σa = −

2000

6
= −333.33psi, σb = −

2000

4
= −500 psi
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4 in.8 in.

d = 2 in.
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 100 kips

 0.02 in

 100 kips

84 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

Problem 4.26: Find the three-element finite element solution to the stepped-bar
problem. See Fig. P4.26 for the geometry and data. Hint: Solve the problem to see
if the end displacement exceeds the gap. If it does, resolve the problem with modified
boundary condition at x = 24 in.

Fig. P4.26

Solution: We note the following data first:

A1 = 4π, A2 = π, A3 = A2, E1 = Ea, E2 = E1, E3 = Es = 3Ea

The assembled equations are

πEa
24

⎡⎢⎢⎣
8 −8 0 0
−8 8 + 3 −3 0
0 −3 3 + 18 −18
0 0 −18 18

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩

Q11
Q12 +Q

2
1

Q22 +Q
3
1

Q32

⎫⎪⎪⎬⎪⎪⎭
The balance relations and boundary conditions are:

U1 = 0, Q
1
2 +Q

2
1 = 2P, Q

2
2 +Q

3
1 = 0, Q

3
2 = 0

The condensed equations are

πEa
24

⎡⎣ 11 −3 0
−3 21 −18
0 −18 18

⎤⎦⎧⎨⎩
U2
U3
U4

⎫⎬⎭ =
⎧⎨⎩
2P
0
0

⎫⎬⎭
The solution is given by (Ea = 10

7, P = 105)

U2 = U3 = U4 =
6P

πEa
= 0.0191in., (Q11)eqil = −2P, (Q11)def = −2P

The displacement is less than the gap, and hence the end does not touch the rigid
wall.

Problem 4.27: Analyze the stepped bar with its right end supported by a linear
axial spring (see Fig. P4.27). The boundary condition at x = 24 in is

EA
du

dx
+ ku = 0
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d = 4 in.

   Steel    

12 in.
4 in.8 in.

d = 2 in.
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 100 kips

 100 kips
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Fig. P4.27

Solution: The stepped bar is the same as that in Problem 4.24. Hence, The
assembled equations are

πEa
24

⎡⎢⎢⎣
8 −8 0 0
−8 8 + 3 −3 0
0 −3 3 + 18 −18
0 0 −18 18

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩

Q11
Q12 +Q

2
1

Q22 +Q
3
1

Q32

⎫⎪⎪⎬⎪⎪⎭
The balance relations and boundary conditions are:

U1 = 0, Q
1
2 +Q

2
1 = −2P, Q22 +Q31 = 0, Q32 = −kU4

The condensed equations are

πEa
24

⎡⎣ 11 −3 0
−3 21 −18
0 −18 18 + c

⎤⎦⎧⎨⎩
U2
U3
U4

⎫⎬⎭ =
⎧⎨⎩
−2P
0
0

⎫⎬⎭
where c = 24k

πEa
. The solution is given by

U2 =
−24P (18 + 7c)
πEa(72 + 37c)

, U3 =
−24P (18 + c)
πEa(72 + 37c)

, U4 = −
432P

πEa(72 + 37c)

Substituting k = 1010, Ea = 10
7 and P = 105, we obtain

U2 = −0.014454, U3 = −0.002069, U4 = −0.4863× 10−5

Problem 4.28: A solid circular brass cylinder Eb = 15 × 106 psi, ds = 0.25 in.)
is encased in a hollow circular steel (Es = 30 × 106 psi, ds = 0.21 in). A load of
P = 1, 330 lb compresses the assembly, as shown in Fig. P4.28. Determine (a)
the compression, and (b) compressive forces and stresses in the steel shell and brass
cylinder. Use the minimum number of linear finite elements. Assume that the Poisson
effect is negligible.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.



P = 1,330 lb
Brass Steel

L=4 in.

86 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

Fig. P4.28

Solution: The problem can be considered as two members in parallel. The element
equations are

EeAe
he

∙
1 −1
−1 1

¸½
ue1
ue2

¾
=

(
P
(e)
1

P
(e)
2

)
. (1)

The two element assembly is given by⎡⎣ EbAb
hb

+ EsAs
hs

−
³
EbAb
hb

+ EsAs
hs

´
−
³
EbAb
hb

+ EsAs
hs

´
EbAb
hb

+ EsAs
hs

⎤⎦½U1
U2

¾
=

(
P
(b)
1 + P

(s)
1

P
(b)
2 + P

(s)
2

)
. (2)

where
hb = hs = 4.0 in, Ab = 0.04909 in

2, As = 0.03464 in
2.

Using the boundary conditions

U1 = 0, P
(b)
2 + P

(s)
2 = −P,

we obtain the compression

U2 = −
P

EbAb
hb

+ EsAs
hs

= − 1330× 10−6
0.1841 + 0.2598

= −0.002996 ≈ 0.003 in.

The element forces P
(b)
i and P

(s)
i are obtained from Eq. (1):

P
(b)
2 =

EbAb
hb

U2 = −551.59 lb, P
(s)
2 =

EsAs
hs

U2 = −778.41 lb

The stresses in steel and brass are

σs = 22.47 ksi (compressive), σb = 11.24 ksi (compressive).
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P P
0.2 in.

6 in.

1.5 in.

6 in. 6 in. 6 in.6 in.

16 in.

12 in.

1 in. (all three)

2.25 in. 
3 in.

3 in.

800 lbs.

Plate thickness
       0.25 in.

(a) Actual plate

800 lbs.

(b) Idealized plate

A1

A2

A1
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Problem 4.29: A rectangular steel bar (Es = 30×106 psi) of length 24 in. has a slot
in the middle half of its length, as shown in Fig. 4.29. Determine the displacement
of the ends due to the axial loads P = 2, 000 lb. Use the minimum number of linear
elements.

Fig. P4.29

Solution: The bar can be modeled, due to symmetry, using two elements, with
lengths h1 = 6in and h2 = 6 in, and areas A1 = 0.9 in

2 and A2 = 1.2in
2. Thus, the

assembled matrix is given by

E

⎡⎢⎣
A1
h1

−A1h1 0

−A1h1
A1
h1
+ A2

h2
−A2h2

0 −A2h2
A2
h2

⎤⎥⎦
⎧⎨⎩
U1
U2
U3

⎫⎬⎭ =
⎧⎪⎨⎪⎩

P
(1)
1

P
(1)
2 + P

(2)
1

P
(2)
1

⎫⎪⎬⎪⎭
or, in view of P

(1)
2 + P

(2)
1 = 0 and P

(2)
1 = P = 2, 000, we have

5× 106
⎡⎣ 0.9 −0.9 0
−0.9 2.1 −1.2

0 −1.2 1.2

⎤⎦⎧⎨⎩
U1
U2
U3

⎫⎬⎭ =
⎧⎨⎩ P

(1)
1
0
2000

⎫⎬⎭ .
The displacements are U2 = 0.4444 in and U3 = 1.9444 in.

Problem 4.30: Repeat Problem 4.29 for the steel bar shown in Fig. P4.30.

Fig. P4.30
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Steel (Es = 200 GPa,
           As= 60 mm2 )

Aluminum (Ea = 70 GPa,
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20 cm

A

C

B

x
•
•

•

Element 1

Element 2

1

2

3
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Solution: The assembled equations are

Es

⎡⎢⎢⎢⎢⎣
A1
h1

−A1h1 0 0

−A1h1
A1
h1
+ A2

h2
−A2h2 0

0 −A2h2
A2
h2
+ A1

h1
A1
h1

0 0 −A1h1
A1
h1

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩

Q11
Q12 +Q

2
1

Q22 +Q
3
1

Q32

⎫⎪⎪⎬⎪⎪⎭
where A1 = 3 in

2, A2 = 2.25 in
2, h1 = 3 in., and h2 = 10in. The balance relations

and boundary conditions are:

U1 = 0, Q
1
2 +Q

2
1 = 0, Q

2
2 +Q

3
1 = 0, Q

3
2 = 800

The condensed equations are

30× 106
⎡⎣ 1.225 −0.225 0
−0.225 1.225 −1.0
0 −1.0 1.0

⎤⎦⎧⎨⎩
U2
U3
U4

⎫⎬⎭ =
⎧⎨⎩
0
0
800

⎫⎬⎭
The solution is given by

U2 = 26.667× 10−6 in., U3 = 145.185× 10−6 in., U4 = 171.852× 10−6 in.

Problem 4.31: The aluminum and steel pipes shown in Fig. P4.31 are fastened to
rigid supports at ends A and B and to a rigid plate C at their junction. Determine
the displacement of point C and stresses in the aluminum and steel pipes. Use the
minimum number of linear finite elements.

Fig. P4.31

Solution: Using two linear elements (steel being element 1), we obtain⎡⎢⎣
EsAs
h1

−EsAsh1
0

−EsAsh1
EsAs
h1

+ EaAa
h2

−EaAah2

0 −EaAah2
EaAa
h2

⎤⎥⎦
⎧⎨⎩
U1
U2
U3

⎫⎬⎭ =
⎧⎪⎨⎪⎩

Q
(1)
1

Q
(1)
2 +Q

(2)
1

Q
(2)
2

⎫⎪⎬⎪⎭
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°

°

°

°
°

A

20 in.

B

C

30 in.

30 in. 25 in.

E

A1 =0.4 in2.

A2 =0.25 in2.

E =30×106 psi.

F1 =2,000 lb

D°

Rigid member
F2 =6,000 lb

°

°

°

Element 2

Element 1

 3

 2

 1

2
2Q

5,000 lbs

= − kU3 + F1

x
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with EsAs = 12× 106 Pa-m, EaAa = 42× 106 Pa-m, h1 = 0.1 m, and h2 = 0.2 m.
Using the boundary conditions

U1 = U3 = 0, Q
(1)
2 +Q

(2)
1 = 2P = 100, 000 N

we obtain

U2 =
2P

EsAs
h1

+ EaAa
h2

=
100× 10−3
120 + 210

=
1

3300
m = 0.3 mm.

The forces and stresses in steel and aluminum pipes are

Q
(1)
2 =

µ
EsAs
h1

¶
U2 =

120× 106
3300

= 36.364 kN, σs = 606.06 MPa,

Q
(2)
2 = −

µ
EaAa
h2

¶
U2 = −

210× 106
3300

= −63.636 kN, σa = −106.06 MPa.

Note that Q
(1)
1 = −Q(1)2 and Q

(2)
1 = −Q(2)2 . Hence, the force equilibrium is satisfied:

Q
(1)
1 +Q

(2)
2 + 2P = 0.

Problem 4.32: A steel bar ABC is pin-supported at its upper end A to an immovable
wall and loaded by a force F1 at its lower end C, as shown in Fig. P4.32 A rigid
horizontal beam BDE is pinned to the vertical bar at B, supported at point D, and
carries a load F2 at end E. Determine the displacements uB and uC at points B and
C.

Fig. P4.32

Solution: First we must find the force acting at point B. Taking moments about point
D of the free-body-diagram of member BDE gives a load of 6000(25/30) = 5000 lb
upward at point B.
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For the two-element mesh, we have (positive x is taken downward with origin at
node 1)

E

⎡⎢⎣
A1
h1

−A1h1 0

−A1h1
A1
h1
+ A2

h2
−A2h2

0 −A2h2
A2
h2

⎤⎥⎦
⎧⎨⎩
U1
U2
U3

⎫⎬⎭ =
⎧⎪⎨⎪⎩

Q
(1)
1

Q
(1)
2 +Q

(2)
1

Q
(2)
2

⎫⎪⎬⎪⎭
with A1/h1 = 0.02 in. and A2/h2 = 0.025/3 in.

The boundary conditions are

U1 = 0, Q
(1)
2 +Q

(2)
1 = P = −5, 000 lb, Q

(2)
2 = 2, 000 lb,

The condensed equations are

30× 106
∙
0.02 + 0.0083 −0.0083
−0.0083 0.0083

¸½
U2
U3

¾
=

½−5, 000
2, 000

¾
whose solution is

U2 = uB = −0.005 in., U3 = uC = 0.003 in.

Problem 4.33: Repeat Problem 4.32 when point C is supported vertically by a
spring (k = 1, 000 lb/in).

Solution: The assembled equations are the same as given in the solution to Problem
4.31. The boundary conditions for the present problem are

U1 = 0, Q
(1)
2 +Q

(2)
1 = −5, 000 lb, Q

(2)
2 + kU3 = F1.

Hence, the condensed equations for the displacements become

30× 106
∙
0.02 + 0.0083 −0.0083
−0.0083 0.0083 + k

E

¸½
U2
U3

¾
=

½−5, 000
2, 000

¾
and for the forces

Q
(1)
1 = −EA1

h1
U2, Q

(2)
2 = F1 − kU3

Problem 4.34: Consider the steel column (a typical column in a multi-storey
building structure) shown in Fig. P4.34. The loads shown are due to the loads
of different floors. The modulus of elasticity is E = 30× 106 psi and cross-sectional
area of the column is A = 40 in2. Determine the vertical displacements and axial
stresses in the column at various floor-column connection points.
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Solution: The assembled equations are

106

⎡⎢⎢⎢⎢⎣
8 −8 0 0 0
−8 16 −8 0 0
0 −8 16 −8 0
0 0 −8 16 −8
0 0 0 −8 8

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
U1
U2
U3
U4
U5

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Q11
Q12 +Q

2
1

Q22 +Q
3
1

Q32 +Q
4
1

Q42

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Using the boundary condition U5 = 0 and balance of forces,

Q11 = 50, 000, Q
1
2 +Q

2
1 = 60, 000, Q

2
2 +Q

3
1 = 64, 000, Q

3
2 +Q

4
1 = 70, 000

we obtain the following condensed equations:

106

⎡⎢⎢⎣
8 −8 0 0
−8 16 −8 0
0 −8 16 −8
0 0 −8 16

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ = 103
⎧⎪⎪⎨⎪⎪⎩
50
60
64
70

⎫⎪⎪⎬⎪⎪⎭
The displacements are (in inches)

U1 = 0.122, U2 = 0.0915, U3 = 0.061, U4 = 0.0305

and the reaction force at node 5 is

Q42 = −244, 000 lb

Fig. P4.34
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Problem 4.35: The bending moment (M) and transverse deflection (w) in a beam
according to the Euler—Bernoulli beam theory are related by

−EI d
2w

dx2
=M(x)

For statically determinate beams, one can readily obtain the expression for the
bending moment in terms of the applied loads. Thus, M(x) is a known function of
x. Determine the maximum deflection of the simply supported beam under uniform
load (see Fig. P4.35) using the finite element method.

Fig. P4.35

Solution: Clearly, the element equations are given by

[Ke]{we} = {fe}+ {Qe}

with

Ke
ij =

Z xb

xa

dψi
dx

dψj
dx

dx, fei =

Z xb

xa
f(x)ψi dx, f(x) =

M

EI

Qe1 =

µ
−dw
dx

¶
xa

, Qe2 =

µ
dw

dx

¶
xb

where ψi are the Lagrange interpolation functions. For the problem at hand, it is
sufficient to model half beam (by symmetry) with one element. The bending moment
is

M(x) =
q0
2

³
Lx− x2

´
Hence, the “source vector” becomes (h = L/2)

f11 =
q0
2EI

Z h

0

µ
1− x

h

¶³
Lx− x2

´
dx =

q0h
3

8EI

f12 =
q0
2EI

Z h

0

x

h

³
Lx− x2

´
dx =

5q0h
3

24EI
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Thus, the one-element model (in half beam) gives

1

h

∙
1 −1
−1 1

¸½
U1
U2

¾
=
q0h

3

24EI

½
3
5

¾
+

½
Q11
Q12

¾
Using the boundary conditions

w(0) = U1 = 0,

µ
dw

dx

¶
x=L/2

= Q12 = 0

we obtain the condensed equation

U2 = w(L/2) =
5q0h

4

24EI
=
5q0L

4

384EI

which coincides with the exact value. The slope at the left end is given by

Q11 =

µ
−dw
dx

¶
x=0

= −U2
h
− q0h

3

8EI
= − q0L

3

24EI

which also coincides with the exact value.

Problem 4.36: Repeat Problem 4.35 for the cantilever beam shown in Fig. P4.36.

Fig. P4.36

Solution: We can use one element model to determine the maximum deflection.
Taking, for convenience, the x-axis to the left from the free end of the beam, we can
write

f(x) =
M

EI
= − 1

EI

q0x
3

6L

Then

f11 = −
q0

6EIL

Z L

0

µ
1− x

L

¶
x3 dx = − q0L

3

120EI

f12 = −
q0

6EIL

Z L

0

x

L
x3 dx = − q0L

3

30EI
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The one-element model gives

1

L

∙
1 −1
−1 1

¸½
U1
U2

¾
= − q0L

3

120EI

½
1
4

¾
+

½
Q11
Q12

¾
The boundary conditions of the problem are (note the unsual situation of both
primary and secondary variable being specified at the same point)

w(L) = U2 = 0,

µ
dw

dx

¶
x=L

= Q12 = 0

Consequently, we have

1

L

∙
1 −1
−1 1

¸½
U1
0

¾
= − q0L

3

120EI

½
1
4

¾
+

½
Q11
0

¾
from which we obtain

U1 = w(0) =
q0L

4

30EI
, Q11 =

q0L
3

30EI
+

q0L
3

120EI
=
q0L

3

24EI

which coincide with the exact values.

Problem 4.37: Turbine disks are often thick near their hub and taper down to
a smaller thickness at the periphery. The equation governing a variable-thickness
t = t(r) disk is

d

dr
(rtσr)− tσθ + tρω2r2 = 0

where ω2 is the angular speed of the disk and

σr = c

µ
du

dr
+ ν

u

r

¶
, σθ = c

µ
u

r
+ ν

du

dr

¶
, c =

E

1− ν2

(a) Construct the weak integral form of the governing equation such that the bi-
linear form is symmetric and the natural boundary condition involves specifying
the quantity trσr.

(b) Develop the finite element model associated with the weak form derived in part
(a).

Solution: (a) The weak form is given by

0 =

Z rb

ra
w

∙
−1
r

d

dr
(trσr) +

tσθ
r
− f0

¸
rdrdθ

= 2π

Z rb

ra

µ
tr
dw

dr
σr + wtσθ − wf0r

¶
dr −Qaw(ra)−Qbw(rb) (1a)
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where
f0 = tρω

2r, Qa ≡ 2π(−trσr)a, Qb ≡ 2π(trσr)b (1b)

(b) The finite element model is given by

[Ke]{ue} = {F e} or Keue = Fe (2a)

where

Ke
ij = 2π

Z rb

ra
ct

∙
r
dψi
dr

µ
dψj
dr

+
ν

r
ψj

¶
+ ψi

µ
1

r
ψj + ν

dψj
dr

¶¸
dr

F ei = 2π

Z rb

ra
f0ψi rdr +Qaψi(ra) +Qbψi(rb) (2b)

Problems 4.38—4.44: For the plane truss structures shown in Figs. P4.38—P4.44,
give (a) the transformed element matrices, (b) the assembled element matrices, and
(c) the condensed matrix equations for the unknown displacements and forces.

Figure P4.38

Solution of Problem 4.38: The element matrices [K1] and [K2] for the two
elements are given by Eq. (4.6.9) by substituting (sin θ1 = cos θ1 = 1/

√
2) for element

1 and (sin θ2 = 0.8944, cos θ2 = −0.4472) for element 2. We have

[K1] = 106

⎡⎢⎢⎣
0.26516 0.26516 −0.26516 −0.26516
0.26516 0.26516 −0.26516 −0.26516
−0.26516 −0.26516 0.26516 0.26516
−0.26516 −0.26516 0.26516 0.26516

⎤⎥⎥⎦

[K2] = 106

⎡⎢⎢⎣
0.17887 −0.35775 −0.17887 0.35775
−0.35775 0.71550 0.35775 −0.71550
−0.17887 0.35775 0.17887 −0.35775
0.35775 −0.71550 −0.35775 0.71550

⎤⎥⎥⎦
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The assembled stiffness matrix is given by⎡⎢⎢⎢⎢⎢⎢⎣

K1
11 K1

12 K1
13 K1

14 0 0
K1
21 K1

22 K1
23 K1

24 0 0
K1
31 K1

32 K1
33 +K

2
11 K1

34 +K
2
12 K2

13 K2
14

K1
41 K1

42 K1
43 +K

2
21 K1

44 +K
2
22 K2

23 K2
24

0 0 K2
31 K2

32 K2
33 K2

34

0 0 K2
41 K2

42 K2
43 K2

44

⎤⎥⎥⎥⎥⎥⎥⎦ =

106

⎡⎢⎢⎢⎢⎢⎢⎣

0.26516 0.26516 −0.26516 −0.26516 0 0
0.26516 0.26516 −0.26516 −0.26516 0 0
−0.26516 −0.26516 0.44403 −0.09259 −0.17887 0.35775
−0.26516 −0.26516 −0.09259 0.98066 0.35775 −0.71550

0 0 −0.17887 0.35775 0.17887 −0.35775
0 0 0.35775 −0.71550 −0.35775 0.71550

⎤⎥⎥⎥⎥⎥⎥⎦
The force vector is given by (Q13 +Q

2
1 = P and Q

1
4 +Q

2
2 = 0)

{F} =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Q11
Q12
P
0
Q23
Q24

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
The condensed equations are,

106
∙
0.44403 −0.09259
−0.09259 0.98066

¸½
U3
U4

¾
=

½
P
0

¾
The solution of these equations is given by (P = 104),

U3 = 0.022973 in., U4 = 0.002169 in.

The reactions at the supports (along the axis of the members) can be computed from
the equations,⎧⎪⎪⎨⎪⎪⎩

F x1 = Q
1
1

F y1 = Q
1
2

F x3 = Q
2
3

F y3 = Q
2
4

⎫⎪⎪⎬⎪⎪⎭ = 106
⎡⎢⎢⎣
−0.26516 −0.26516
−0.26516 −0.26516
−0.17887 0.35775
0.35775 −0.71550

⎤⎥⎥⎦½U3U4
¾
=

⎧⎪⎪⎨⎪⎪⎩
−6, 667
−6, 667
−3, 333
6, 667

⎫⎪⎪⎬⎪⎪⎭
Note that these are the components of forces in the global coordinate system (i.e.,
horizontal and vertical components) at global nodes 1 and 2. When resolved along the
axis of the member, these would give the member axial forces (in element coordinates):

Q̄11 = −9, 428 lbs., Q̄23 = −7, 453 lbs.
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The forces transverse to each member (i.e., Q̄12 and Q̄
2
4) would be zero (as they should

for any truss element). The nodal forces at the other node of each element are equal
and opposite to the values given above.

Figure P4.39

Solution of Problem 4.39: First we note that

h1 = 19.21 ft, h2 = 30 ft, h3 = 23.43 ft

cos θ1 =
12

19.21
= 0.6247, sin θ1 =

15

19.21
= 0.7809, cos θ2 = 1, sin θ2 = 0

cos θ3 = −
18

23.43
= −0.7682, sin θ3 =

15

23.43
= 0.6402

The element stiffness matrices are

[K1] = 106

⎡⎢⎢⎣
0.7618 0.9523 −0.7618 −0.9523
0.9523 1.1904 −0.9523 −1.1904
−0.7618 −0.9523 0.7618 0.9523
−0.9523 −1.1904 0.9523 1.1904

⎤⎥⎥⎦

[K2] = 106

⎡⎢⎢⎣
1.6667 0.0000 −1.6667 0.0000
0.0000 0.0000 0.0000 0.0000
−1.6667 0.0000 1.6667 0.0000
0.0000 0.0000 0.0000 0.0000

⎤⎥⎥⎦

[K3] = 106

⎡⎢⎢⎣
0.9445 −0.7871 −0.9445 0.7871
−0.7871 0.6560 0.7871 −0.6560
−0.9445 0.7871 0.9445 −0.7871
0.7871 −0.6560 −0.7871 0.6560

⎤⎥⎥⎦
The assembled stiffness matrix is

[K] = 106

⎡⎢⎢⎢⎢⎢⎢⎣

2.4285 0.9523 −0.7618 −0.9523 −1.6667 0.0000
0.9523 1.1904 −0.9523 −1.1904 0.0000 0.0000
−0.7618 −0.9523 1.7063 0.1652 −0.9445 0.7871
−0.9523 −1.1904 0.1652 1.8463 0.7871 −0.6560
−1.6667 0.0000 −0.9445 0.7871 2.6111 −0.7871
0.0000 0.0000 0.7871 −0.6560 −0.7871 0.6560

⎤⎥⎥⎥⎥⎥⎥⎦
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The boundary conditions are

U1 = U2 = U6 = 0, Q13 +Q
3
1 = 0, Q14 +Q

3
2 = −20, 000

The condensed equations are

106

⎡⎣ 1.7063 0.1652 −0.9445
0.1652 1.8463 0.7871
−0.9445 0.7871 2.6111

⎤⎦⎧⎨⎩
U3
U4
U5

⎫⎬⎭ =
⎧⎨⎩

0
−20, 000

0

⎫⎬⎭
The solution is

U3 = 0.0045 in, U4 = −0.0137 in, U5 = 0.0058 in
Q11 +Q

2
1 = 0 lb, Q

1
2 +Q

2
2 = 12, 000 lb, Q

2
4 +Q

3
4 = 8, 000 lb

Q̄11 = 15, 370 lb, Q̄
2
1 = −9, 600 lb, Q̄31 = 12, 500 lb

Figure P4.40

Solution of Problem 4.40: This problem involves 5 members and it is hard to be
solved by hand. The main point should be to give the specified displacements and
forces on the structure. We have

U1 = U2 = U8 = 0, F5 = 8, 000 lbs. , F6 = −8, 000 lbs.

The connectivity of the elements is defined by the matrix

[B] =

⎡⎢⎢⎢⎢⎣
1 3
1 2
2 3
2 4
4 3

⎤⎥⎥⎥⎥⎦
The angle of orientation of each member are (CCW):

θ1 = 45
◦, θ2 = 0

◦, θ3 = 90
◦, θ4 = 0

◦, θ5 = 315
◦
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The element stiffness matrices are

[K1] = 106

⎡⎢⎢⎣
0.2652 0.2652 −0.2652 −0.2652
0.2652 0.2652 −0.2652 −0.2652
−0.2652 −0.2652 0.2652 0.2652
−0.2652 −0.2652 0.2652 0.2652

⎤⎥⎥⎦

[K2] = 106

⎡⎢⎢⎣
0.7500 0.0000 −0.7500 0.0000
0.0000 0.0000 0.0000 0.0000
−0.7500 0.0000 0.7500 0.0000
0.0000 0.0000 0.0000 0.0000

⎤⎥⎥⎦

[K3] = 106

⎡⎢⎢⎣
0.0000 0.0000 0.0000 0.0000
0.0000 0.7500 0.0000 −0.7500
0.0000 0.0000 0.0000 0.0000
0.0000 −0.7500 0.0000 0.7500

⎤⎥⎥⎦

[K4] = 106

⎡⎢⎢⎣
0.7500 0.0000 −0.7500 0.0000
0.0000 0.0000 0.0000 0.0000
−0.7500 0.0000 0.7500 0.0000
0.0000 0.0000 0.0000 0.0000

⎤⎥⎥⎦

[K5] = 106

⎡⎢⎢⎣
0.2652 −0.2652 −0.2652 0.2652
−0.2652 0.2652 0.2652 −0.2652
−0.2652 0.2652 0.2652 −0.2652
0.2652 −0.2652 −0.2652 0.2652

⎤⎥⎥⎦

The generalized displacements calculated using FEM1D are

U3 = 0.0107 in., U4 = −0.0257 in., U5 = 0.0257 in.
U6 = −0.0257 in., U7 = 0.0213 in.

The axial forces in the members are (subscripts denote the global node numbers; i.e.,
Fij denotes the tensile force in the member connecting global nodes i and j):

F12 = 8 kips, F13 = 0 kips, F23 = 0 kips, F24 = −8 kips, F34 =
√
2× 8 kips

These can be easily verified using the “method of sections” for this determinate
structure.

Solution of Problem 4.41: The angle of orientation of each member are (CCW):

θ1 = 0
◦, θ2 = 90

◦, θ3 = 45
◦
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The element stiffness matrices are

[K1] =
EA

L

⎡⎢⎢⎣
1.0 0.0 −1.0 0.0
0.0 0.0 0.0 0.0
−1.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0

⎤⎥⎥⎦

[K2] =
EA

L

⎡⎢⎢⎣
0.0 0.0 0.0 0.0
0.0 1.0 0.0 −1.0
0.0 0.0 0.0 0.0
0.0 −1.0 0.0 1.0

⎤⎥⎥⎦

[K3] =
EA

L

⎡⎢⎢⎣
0.3536 0.3536 −0.3536 −0.3536
0.3536 0.3536 −0.3536 −0.3536
−0.3536 −0.3536 0.3536 0.3536
−0.3536 −0.3536 0.3536 0.3536

⎤⎥⎥⎦

Figure P4.41

The assembled stiffness matrix is

[K] =
EA

L

⎡⎢⎢⎢⎢⎢⎢⎣

1.3536 0.3536 −1.0 0.0 −0.3536 −0.3536
0.3536 0.3536 0.0 0.0 −0.3536 −0.3536
−1.0000 0.0000 1.0 0.0 0.0000 0.0000
0.0000 0.0000 0.0 1.0 0.0000 −1.0000
−0.3536 −0.3536 0.0 0.0 0.3536 0.3536
−0.3536 −0.3536 0.0 −1.0 0.3536 1.3536

⎤⎥⎥⎥⎥⎥⎥⎦
The boundary conditions are

U1 = U2 = U3 = U4 = 0, F5 = P kips , F6 = −2P kips

The generalized displacements calculated using FEM1D are (in inches)

U5 = 5.828
PL

EA
, U6 = 3.0

PL

EA
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The reaction forces at the supports in the x- and y-directions are (superscripts refer
to global node numbers)

F 1x = −P kips, F 1y = −P kips, F 2x = 0 kips, F 2y = 3P kips

Figure P4.42

Solution of Problem 4.42: The angle of orientation of each member are (CCW):

θ1 = 135
◦, θ2 = 90

◦, θ3 = 45
◦

The element stiffness matrices are

[K1] =
EA

10L

⎡⎢⎢⎣
1.7675 −1.7675 −1.7675 1.7675
−1.7675 1.7675 1.7675 −1.7675
−1.7675 1.7675 1.7675 −1.7675
1.7675 −1.7675 −1.7675 1.7675

⎤⎥⎥⎦

[K2] =
EA

L

⎡⎢⎢⎣
0.0 0.0 0.0 0.0
0.0 1.0 0.0 −1.0
0.0 0.0 0.0 0.0
0.0 −1.0 0.0 1.0

⎤⎥⎥⎦

[K3] =
EA

10L

⎡⎢⎢⎣
5.3025 5.3025 −5.3025 −5.3025
5.3025 5.3025 −5.3025 −5.3025
−5.3025 −5.3025 5.3025 5.3025
−5.3025 −5.3025 5.3025 5.3025

⎤⎥⎥⎦
The assembled stiffness matrix is (symmetric)

[K] =
EA

L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.707 0.353 −0.177 0.177 0.000 0.000 −0.530 −0.530
1.707 0.177 −0.177 0.000 −1.000 −0.530 −0.530

0.177 −0.177 0.000 0.000 0.000 0.000
0.177 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000
1.000 0.000 0.000

0.530 0.530
0.530

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The boundary conditions are

U3 = U4 = U5 = U6 = U7 = U8 = 0, F1 = P = 16 kips , F2 = 0 kips

The generalized displacements calculated using FEM1D are (in inches)

U1 = 1.5778
PL

EA
, U6 = −0.3267

PL

EA

The member axial forces are (superscripts refer to element numbers; -ve is
compressive)

F 1 = 7.616 kips, F 2 = 5.228 kips, F 3 = −15.01 kips

Problem 4.43: Determine the forces and displacements of points B and C of the
structure shown in Fig. P4.43.

Figure P4.43

Solution of Problem 4.43: We wish to express the global displacements at node
2 in terms of the local displacements so that we can readily impose the boundary
conditions on the local displacement components. Then the transformed equations
are given by

K̄Ū = F̄

where
K̄ = TKTT, F̄ = TF, Ū = TTU

and

[T ] =

⎡⎣ [I] [0] [0]
[0] [A] [0]
[0] [0] [I]

⎤⎦ , [A] =

∙
cos 60 sin 60
− sin 60 cos 60

¸
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The element stiffness matrices are

[K1] = 109

⎡⎢⎢⎣
0.1035 0.0000 −0.1035 0.0000
0.0000 0.0000 0.0000 0.0000
−0.1035 0.0000 0.1035 0.0000
0.0000 0.0000 0.0000 0.0000

⎤⎥⎥⎦

[K2] = 109

⎡⎢⎢⎣
0.0 0.0000 0.0 0.0000
0.0 0.1035 0.0 −0.1035
0.0 0.0000 0.0 0.0000
0.0 −0.1035 0.0 0.1035

⎤⎥⎥⎦

[K3] = 108

⎡⎢⎢⎣
0.3659 0.3659 −0.3659 −0.3659
0.3659 0.3659 −0.3659 −0.3659
−0.3659 −0.3659 0.3659 0.3659
−0.3659 −0.3659 0.3659 0.3659

⎤⎥⎥⎦
The transformed global stiffness matrix is

108

⎡⎢⎢⎢⎢⎢⎢⎣

1.4009 0.3659 −0.5175 0.8963 −0.3659 0.3659
0.3659 0.0000 0.0000 −0.3659 −0.3659

1.0350 0.0000 0.0000 −0.8963
1.0350 0.0000 −0.5175

0.3659 0.3659
1.4009

⎤⎥⎥⎥⎥⎥⎥⎦
The boundary conditions are

U1 = Ū1 = 0, U2 = Ū2 = 0, U2y0 = Ū4 = 0, U5 = Ū5 = 0, U6 = Ū6 = 0

F2x0 = F̄3 = 0.866× 106

The solution of the condensed equation is

Ū3 = U2x0 =
0.866× 106
1.0350× 108 = 0.8367× 10

−2 m

Problem 4.44: Determine the forces and elongations of each bar in the structure
shown in Fig. P4.44.

Solution of Problem 4.44: The element stiffness matrices are the same as in
Problem 4.41. The transformed global stiffness matrix is

108

⎡⎢⎢⎢⎢⎢⎢⎣

1.4009 0.3659 −1.0350 0.0000 −0.5175 0.0000
0.3659 0.0000 0.0000 −0.5175 0.0000

1.0350 0.0000 0.0000 0.0000
1.0350 −0.7319 −0.7319

1.2493 0.5175
0.5175

⎤⎥⎥⎥⎥⎥⎥⎦
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Figure P4.44

The boundary conditions are

U1 = Ū1 = 0, U2 = Ū2 = 0, U4 = Ū4 = 0, U6y0 = Ū6 = 0

F4 = F̄4 = 1.0× 106

The solution of the condensed equations is

Ū4 = U4 = 1.649× 10−2 m, Ū5 = U3x0 = 0.966× 10−2 m

Problem 4.45: Determine the forces, elongations and stresses in each bar in the
structure shown in Fig. P4.45. Also, determine the vertical displacements of points
A and D.

Figure P4.45
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Solution: This is a statically determinate problem; that is, the forces at points B
and C can be readily determined from statics. Using the free-body-diagram of the
rigid bar ABCD, we obtainX

MB = 0 : 90× 5 + FCF × 5− 80× 12 = 0→ FCF = 102 kipsX
MC = 0 : 90× 10− FBE × 5− 80× 7 = 0→ FBE = 68 kips

If we use two linear finite elements to represent the bars CF and BE, the assembled
matrix of the structure is given by

1 2 3 4

1
2
3
4

⎡⎢⎢⎣
k1 0 −k1 0
0 k2 0 −k2
−k1 0 k1 0
0 −k2 0 k2

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
Q11
Q21
Q12
Q22

⎫⎪⎪⎬⎪⎪⎭
where

k1 =
EABE
h1

=
(29× 106)(19.5)

120
= 4.7125× 106 lb/in

k2 =
EACF
h2

=
(29× 106)(16.8)

96
= 5.075× 106 lb/in

The assembled equations are

106

⎡⎢⎢⎣
4.7125 0 −4.7125 0
0 5.0750 0 −5.0750

−4.7125 0 4.7125 0
0 −5.0750 0 5.0750

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
Q11
Q21
Q12
Q22

⎫⎪⎪⎬⎪⎪⎭
The boundary conditions of the problem are

U3 = U4 = 0; Q11 = FBE = 68× 103 lb, Q21 = FCF = 102× 103 lb

Hence, the condensed equations are given by

106
∙
4.7125 0
0 5.0750

¸½
U1
U2

¾
= 103

½
68
102

¾
whose solution is (compressions of the bars)

U1 = 0.01443 (in), U2 = 0.02010 (in)

By similarity of triangles, we can determine the displacement of points A and D. We
have

UA = U1 − (U2 − U1) = 0.00876 in. downward

UD = U2 +
7

5
(U2 − U1) = 0.0280 (in) downward
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The stresses in bars BE and CF are

σBE =
FBE
ABE

=
68× 103
19.5

= 3, 487.2 psi

σCF =
FCF
ACF

=
102× 103
16.8

= 6, 071.4 psi

Problem 4.46: Determine the forces and elongations of each bar in the structure
shown in Fig. P4.45 when end A is pinned to a rigid wall (and P1 is removed).

Solution: From Problem 4.45, the assembled equations are

106

⎡⎢⎢⎣
4.7125 0 −4.7125 0
0 5.0750 0 −5.0750

−4.7125 0 4.7125 0
0 −5.0750 0 5.0750

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
Q11
Q21
Q12
Q22

⎫⎪⎪⎬⎪⎪⎭
The boundary and constraint conditions of the problem are

U3 = U4 = 0; U1 − 0.5U2 = 0

The transformation equation between (U1, U2, U3, U4) and (U2, U3, U4)is (M =
4, m = 1, n = 3) ⎧⎪⎪⎨⎪⎪⎩

U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ =
⎡⎢⎢⎣
0.5 0.0 0.0
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

⎤⎥⎥⎦
⎧⎨⎩
U2
U3
U4

⎫⎬⎭
The transformed set of equations are

106

⎡⎣ 6.253 −2.356 −5.075
−2.356 4.713 0.0
−5.075 0.0 5.075

⎤⎦⎧⎨⎩
U2
U3
U4

⎫⎬⎭ =
⎧⎨⎩
0.5Q11 +Q

2
1

Q12
Q22

⎫⎬⎭
From the free-body diagram of the bar ABCD (see Figure P4.46), we find that
0.5FBE + FCF = 1.7P2; therefore, we have 0.5Q

1
1 + Q

2
1 = 1.7P2 = 136 kips and

the condensed equation for the unknown U2 is

6.253U2 =
136× 103
6.253× 106 , U2 = 0.02175 (in), U1 = 0.5U2 = 0.01087 (in)

The forces in the bars AC and BD are½
Q11
Q21

¾
= 106

∙
4.7125 0
0 5.0750

¸½
U1
U2

¾
= 106

½
0.051225
0.110381

¾
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The stresses in bars BE and CF are

σBE =
FBE
ABE

=
51.225× 103

19.5
= 2, 626.9 psi

σCF =
FCF
ACF

=
110.381× 103

16.8
= 6, 570.3 psi

Figure P4.46
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Chapter 5

BEAMS AND FRAMES

Problem 5.1: The natural vibration of a beam under applied axial compressive load
N0 is governed by the differential equation

d2

dx2

Ã
EI
d2w

dx2

!
+N0

d2w

dx2
= ρAω2w

where ω denotes nondimensional frequency of natural vibration, EI is the bending
stiffness, and ρA is the mass (mass density times cross-sectional area) of the beam.
Develop (a) the weak form and (b) finite element model of the equation.

Solution: This problem is useful for the material covered in Chapter 6.
(a) The weak form is given by

0 =

Z xb

xa

Ã
EI
d2v

dx2
d2w

dx2
−N0

dv

dx

dw

dx
− ρAω2vw

!
dx

+

(
v

"
d

dx

Ã
EI
d2w

dx2

!
+N0

dw

dx

#)xb
xa

+

"µ
−dv
dx

¶
EI
d2w

dx2

#xb
xa

where v is the weight function. The primary variables of the formulation are

w,
dw

dx

and the secondary variables are

d

dx

Ã
EI
d2w

dx2

!
+N0

dw

dx
, EI

d2w

dx2

Define the secondary variables [see Eq. (5.2.3)] as"
d

dx

Ã
EI
d2w

dx2

!
+N0

dw

dx

#
x=xa

≡ Q1"
− d
dx

Ã
EI
d2w

dx2

!
−N0

dw

dx

#
x=xb

≡ Q3"
EI
d2w

dx2

#
x=xa

≡ Q2,
"
−EI d

2w

dx2

#
x=xb

≡ Q4
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The weak form becomes

0 =

Z xb

xa

Ã
EI
d2v

dx2
d2w

dx2
−N0

dv

dx

dw

dx
− ρAω2vw

!
dx

− v(xa)Q1 − v(xb)Q3 − θ(xa)Q2 − θ(xb)Q4

where θ = −(dw/dx).
(b) The finite element model of the equation is obtained by substituting Eq. (5.2.10)
into the weak form. We obtain

([Ke]− λ[Me]−N0[Ge]) {∆} = {Qe}
where λ = ω2 and

Ke
ij =

Z xb

xa
EI
d2φi
dx2

d2φj
dx2

dx, Me
ij =

Z xb

xa
ρAφiφj dx, G

e
ij =

Z xb

xa

dφi
dx

dφj
dx

dx

and {∆e} and {Qe} are the usual nodal displacement and force vectors. Here [Ke]
denotes the stiffness matrix, [Me] the mass matrix, and [Ge] the geometric stiffness
matrix.

Problem 5.2: The differential equation governing axisymmetric bending of circular
plates on elastic foundation is given by

−1
r

d

dr

∙
d

dr
(rMrr)−Mθθ

¸
+ kw = q(r)

where k is the modulus of the elastic foundation, q is the transverse distributed load,
and

Mrr = −D
Ã
d2w

dr2
+ ν

1

r

dw

dr

!
, Mθθ = −D

Ã
ν
d2w

dr2
+
1

r

dw

dr

!
Develop (a) the weak form and identify the primary and secondary variables, and (b)
the finite element model. Note that the shear force is defined by

Qr =
1

r

∙
d

dr
(rMrr)−Mθθ

¸
Solution: Since this is an axisymmetric problem associated with a circular plate,
the elemental volume is dV = dr · r dθ · dz. The integration with respect to θ and z
yields (because all quantities are independent of θ and z) a factor 2πt, where t is the
thickness of the plate. Dividing out by this factor, we have

0 =

Z rb

ra
v

"
−1
r

d2

dr2
(rMrr) +

1

r

dMθθ

dr
+ kvw − q

#
r dr

=

Z rb

ra

"
−d

2v

dr2
Mrr −

1

r

dv

dr
Mθθ + kvw − vq

#
rdr

− v(ra)Q1 − v(rb)Q3 −
µ
−dv
dr

¶
a
Q2 −

µ
−dv
dr

¶
b
Q4 (1)
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where v is the weight function and

Q1 = −
∙
d

dr
(rMrr)−Mθθ

¸
ra

, Q3 =

∙
d

dr
(rMrr)−Mθθ

¸
rb

Q2 = − [rMrr]ra , Q4 = [rMrr]rb (2)

To develop the finite element model, we assume finite element interpolation of
w(r) (like in the beam bending)

w(r) ≈ weh(r) =
n=4X
j=1

∆ejφ
e
j(r) (3)

Substituting for v = φi (to obtain the ith algebraic equation of the system) and
w = weh from Eq. (3), we arrive at the result

[Ke]{∆e} = {qe}+ {Qe} (4)

where

Ke
ij =

Z rb

ra
D

"
d2φi
dr2

d2φj
dr2

+
ν

r

Ã
dφi
dr

d2φj
dr2

+
d2φi
dr2

dφj
dr

!
+
1

r2
dφi
dr

dφj
dr

#
r dr

qei =

Z rb

ra
qφi r dr (5)

Problem 5.3: The differential equations governing axisymmetric bending of circular
plates according to the shear deformation plate theory are

−1
r

d

dr
(rQr)− q = 0 (1)

−1
r

∙
d

dr
(rMrr)−Mθθ

¸
+Qr = 0 (2)

where

Mrr = D

µ
dΨ

dr
+ ν
Ψ

r

¶
, Mθθ = D

µ
ν
dΨ

dr
+
Ψ

r

¶
Qr = KsGH

µ
Ψ+

dw

dr

¶
D = EH3/[12(1− ν2)] and H is the plate thickness. Develop
(a) the weak form of the equations over an element; and
(b) the finite element model of the equations.
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Solution: (a) The weak forms of the equations are obtained as follows:

0 =

Z rb

ra
v1

∙
−1
r

d

dr
(rQr)− q

¸
rdr

=

Z rb

ra

∙
dv1
dr
Qr − q

¸
rdr + [v1 · (−rQr)]rbra

=

Z rb

ra

∙
dv1
dr
Qr − q

¸
rdr − v1(ra)Q1 − v1(rb)Q3 (1)

0 =

Z rb

ra
v2

½
−1
r

∙
d

dr
(rMrr)−Mθθ

¸
+Qr

¾
rdr

=

Z rb

ra

∙
dv2
dr
(rMrr) + v2Mθθ + v1rQr

¸
dr + [v2 · (−rMrr)]

rb
ra

=

Z rb

ra

∙
dv2
dr
(rMrr) + v2Mθθ + v2rQr

¸
dr − v2(ra)Q2 − v2(rb)Q4 (2)

where

Q1 = − [rQr]ra , Q3 = [rQr]rb , Q2 = − [rMrr]ra , Q4 = [rMrr]rb (3)

(b) The finite element model is given by seeking approximation of w and Ψ as

w(r) ≈ weh =
mX
i=1

weiψ
(1)
i (r), Ψ(r) ≈ Ψeh =

mX
i=1

Ψeiψ
(2)
i (r) (4)

Substituting the above expressions along with v1 = ψ
(1)
i and v2 = ψ

(2)
i into the weak

forms, we obtain ∙
[K11] [K12]
[K21] [K22]

¸½ {w}
{Ψ}

¾
=

½ {F 1}
{F 2}

¾
(5)

where

K11
ij =

Z rb

ra
KsGH

dψ
(1)
i

dr

dψ
(1)
j

dr
rdr, K12

ij =

Z rb

ra
KsGH

dψ
(1)
i

dr
ψ
(2)
j rdr = K21

ji

K22
ij =

Z rb

ra
D

⎡⎣dψ(2)i
dr

dψ
(2)
j

dr
+

ν

r

⎛⎝ψ(2)i dψ
(2)
j

dr
+
dψ

(2)
i

dr
ψ
(2)
j

⎞⎠+ 1

r2
ψ
(2)
i ψ

(2)
j

⎤⎦ rdr
+

Z rb

ra
KsGHψ

(2)
i ψ

(2)
j rdr

F 1i =

Z rb

ra
qψ

(1)
i rdr + ψ

(1)
i (ra)Q1 + ψ

(1)
i (rb)Q3

F 2i = ψ
(2)
i (ra)Q2 + ψ

(2)
i (rb)Q4 (6)
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New Problem 5.1: Consider the following pair of differential equations:

− d
dx

Ã
a
du

dx
− bd

2w

dx2

!
= 0, − d

2

dx2

Ã
b
du

dx
− cd

2w

dx2

!
− f = 0

where u and w are the dependent unknowns, a, b, c and f are given functions of x.
(a) Develop the weak forms of the equations over a typical element and identify the

primary and secondary variables of the formulation. Make sure that the bilinear
form is symmetric (so that the element coefficient matrix is symmetric).

(b) Develop the finite element model by assuming approximation of the form

u(x) =
mX
j=1

ujψj(x) , w(x) =
nX
j=1

wjφj(x)

Hint: The weight functions v1 and v2 used for the two equations are like u and w,
respectively.

(c) Comment on the type of interpolation functions ψj and φj (i.e., Lagrange type or
Hermite type) and the minimum degree of approximation functions that can be
used in this problem.

Solution: The weak forms are

0 =

Z xb

xa
v1

"
− d
dx

Ã
a
du

dx
− bd

2w

dx2

!#
dx

=

Z xb

xa

dv1
dx

Ã
a
du

dx
− bd

2w

dx2

!
dx−

"
v1

Ã
a
du

dx
− bd

2w

dx2

!#xb
xa

=

Z xb

xa

dv1
dx

Ã
a
du

dx
− bd

2w

dx2

!
dx− v1(xa)P1 − v1(xb)P2 (1)

0 =

Z xb

xa
v2

"
− d

2

dx2

Ã
b
du

dx
− cd

2w

dx2

!
− f

#
dx

=

Z xb

xa

"
−d

2v2
dx2

Ã
b
du

dx
− cd

2w

dx2

!
− v2f

#
dx

− v2(xa)P3 − v2(xb)P4 −
µ
dv2
dx

¶
xa

P5 −
µ
dv2
dx

¶
xb

P6 (2)

where Pi are the secondary variables

P1 =

"
−
Ã
a
du

dx
− bd

2w

dx2

!#
xa

, P2 =

"Ã
a
du

dx
− bd

2w

dx2

!#
xb

(3)
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P3 =

"
− d
dx

Ã
b
du

dx
− cd

2w

dx2

!#
xa

, P4 =

"
d

dx

Ã
b
du

dx
− cd

2w

dx2

!#
xb

(4a)

P5 =

"
b
du

dx
− cd

2w

dx2

#
xa

, P6 =

"
−
Ã
b
du

dx
− cd

2w

dx2

!#
xb

(4b)

The primary variables are u, w, and dw/dx.

(b) Substituting v1 = ψi, v2 = φi, and the above approximation into the weak forms
we obtain the finite element model∙

[A] [B]
[C] [D]

¸½ {u}
{w}

¾
=

½ {0}
{f}

¾
+

½ {R}
{Q}

¾
(5)

where

Aij =

Z xb

xa
a
dψi
dx

dψj
dx

dx, Bij = −
Z xb

xa
b
dψi
dx

d2φj
dx2

dx

Cij =−
Z xb

xa
b
d2φi
dx2

dψj
dx

dx, Dij =

Z xb

xa
c
d2φi
dx2

d2φj
dx2

dx

fi =

Z xb

xa
fφi dx (6)

and

{R} =
½
P1
P2

¾
, {Q} =

⎧⎪⎪⎨⎪⎪⎩
P3
P4
P5
P6

⎫⎪⎪⎬⎪⎪⎭ (7)

Clearly, The coefficient matrix is symmetric because Cji = Bij or [C]
T = [B].

(c) It is clear from the weak forms that ψi must be the Lagrange interpolation
functions (minimum linear) and φi are the Hermite interpolation functions (minimum
cubic).

New Problem 5.2: The principle of minimum total potential energy for
axisymmetric bending of polar orthotropic plates according to the first-order shear
deformation theory requires δΠ(w0,φ) = 0, where

δΠ(w,Ψ) = 2

Z a

b

"µ
D11

dΨ

dr
+D12

Ψ

r

¶
dδΨ

dr
+
1

r

µ
D12

dΨ

dr
+D22

Ψ

r

¶
δΨ

+A55

µ
Ψ+

dw

dr

¶µ
δΨ+

dδw

dr

¶
− qδw

#
rdr (1)

where b is the inner radius and a the outer radius of the radial element. Derive
the displacement finite element model of the equations. In particular, show that the
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finite element model is of the form (i.e., define the matrix coefficients of the following
equation) ∙

[K11] [K12]
[K12]T [K22]

¸½ {w}
{Ψ}

¾
=

½ {F 1}
{F 2}

¾
(2)

Solution: Clearly, the given variational statement is equivalent to the following weak
forms:

0 =

Z a

b
A55

∙
dδw

dr

µ
Ψ+

dw

dr

¶
− qδw

¸
rdr (3)

0 =

Z a

b

"
dδΨ

dr

µ
D11

dΨ

dr
+D12

Ψ

r

¶
+
1

r
δΨ

µ
D12

dΨ

dr
+D22

Ψ

r

¶

+A55δΨ

µ
Ψ+

dw

dr

¶#
rdr (4)

The variations δw = v1 and δΨ = v2 are the weight functions of the weak forms.
Assuming approximation of the form

w(r) ≈ weh =
mX
i=1

weiψ
(1)
i (r), Ψ(r) ≈ Ψeh =

mX
i=1

Ψeiψ
(2)
i (5)

in (3) and (4), we obtain the finite element model in Eq. (2), with the matrix
coefficients

K11
ij =

Z rb

ra
A55

dψ
(1)
i

dr

dψ
(1)
j

dr
rdr, K12

ij =

Z rb

ra
A55

dψ
(1)
i

dr
ψ
(2)
j rdr

K22
ij =

Z rb

ra

"
D11

dψ
(2)
i

dr

dψ
(2)
j

dr
+
1

r
D12

⎛⎝ψ(2)i dψ
(2)
j

dr
+
dψ

(2)
i

dr
ψ
(2)
j

⎞⎠
+
1

r2
D22ψ

(2)
i ψ

(2)
j +A55ψ

(2)
i ψ

(2)
j

#
rdr

F 1i =

Z rb

ra
qψ

(1)
i rdr + ψ

(1)
i (ra)Q1 + ψ

(1)
i (rb)Q3

F 2i = ψ
(2)
i (ra)Q2 + ψ

(2)
i (rb)Q4 (6)

These coefficients reduce to those in Problem 5.3 for the isotropic case.

Problem 5.4: Consider the fourth-order equation (5.2.1) and its weak form (5.2.4).
Suppose that a two-node element is employed, with three primary variables at each
node: (w, θ, and κ), where θ = dw/dx and κ = d2w/dx2. Show that the associated
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Hermite interpolation functions are given by

φ1 = 1− 10
x̄3

h3
+ 15

x̄4

h4
− 6 x̄

5

h5
, φ2 = x̄

Ã
1− 6 x̄

2

h2
+ 8

x̄3

h3
− 3 x̄

4

h4

!

φ3 =
x̄2

2

Ã
1− 3 x̄

h
+ 3

x̄2

h2
− x̄

3

h3

!
, φ4 = 10

x̄3

h3
− 15 x̄

4

h4
+ 6

x̄5

h5

φ5 = −x̄
Ã
4
x̄2

h2
− 7 x̄

3

h3
+ 3

x̄4

h4

!
, φ6 =

x̄2

2

Ã
x̄

h
− 2 x̄

2

h2
+
x̄3

h3

!

where x̄ is the element coordinate with the origin at node 1 (see the figure below).

Solution: Let w(x̄) ≈ c1+c2x̄+c3x̄2+c4x̄3+c5x̄4+c6x̄5 where x̄ is the local coordinate
with the origin at node 1 (i.e., x = x̄ + xe1. where x is the global coordinate and x

e
1

is the global coordinate of the first node of element e). Evaluating w, θ ≡ dw
dx , and

κ ≡ d2w
dx2

at nodes 1 and 2 (i.e., at x̄ = 0 and x̄ = h), we obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w1
θ1
κ1
w2
θ2
κ2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
1 h h2 h3 h4 h5

0 1 2h 3h2 4h3 5h4

0 0 2 6h 12h2 20h3

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c1
c2
c3
c4
c5
c6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1)

Inverting the equations, we obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c1
c2
c3
c4
c5
c6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

1

2h5

⎡⎢⎢⎢⎢⎢⎢⎣

2h5 0 0 0 0 0
0 2h5 0 0 0 0
0 0 h5 0 0 0

−20h2 −12h3 −3h4 20h2 −8h3 h4

30h 16h2 3h3 −30h 14h2 −2h3
−12 −6h −h2 12 −6h h2

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w1
θ1
κ1
w2
θ2
κ2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2)

Substituting the above expression for ci into the approximation, we obtain

w(x̄) ≈ c1 + c2x̄+ c3x̄2 + c4x̄3 + c5x̄4 + c6x̄5 =
6X
i=1

φi(x̄)∆i (3)

where φi are the required Hermite polynomials of degree 5.
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New Problem 5.3: Compute element stiffness, mass matrices and force vector (for
uniform load) for the beam element of Problem 5.4.

Solution: The element stiffness matrix [K], mass matrix [M ], and force vector {f}
are obtained by substituting for φi into

Kij = EI

Z h

0

d2φi
dx2

d2φj
dx2

dx, Mij = ρA

Z h

0
φiφj dx, fi = q0

Z h

0
φi dx

The stiffness matrix is

[K] =
EI

70h3

⎡⎢⎢⎢⎢⎢⎢⎣

1200 600h 30h2 −1200 600h −30h2
600h 384h2 22h3 −600h 216h2 −8h3
30h2 22h3 6h4 −30h2 8h3 h4

−1200 −600h −30h2 1200 −600h 30h2

600h 216h2 8h3 −600h 384h2 −22h3
−30h2 −8h3 h4 30h2 −22h3 6h4

⎤⎥⎥⎥⎥⎥⎥⎦ .

and the mass matrix is

[M ] =
ρAh

55440

⎡⎢⎢⎢⎢⎢⎢⎣

21720 3732h 281h2 6000 −1812h 181h2

3732h 832h2 69h3 1812h −532h2 52h3

281h2 69h3 6h4 181h2 −52h3 5h4

6000 1812h 181h2 21720 −3732h 281h2

−1812h −532h2 −52h3 −3732h 832h2 −69h3
181h2 52h3 5h4 281h2 −69h3 6h4

⎤⎥⎥⎥⎥⎥⎥⎦ .

The force vector is given by

{f}T = f0h

120
{60 12h h2 60 − 12h h2}.

These element matrices are calculated using program Maple.

Problem 5.5: Consider the weak form (5.2.4) of the Euler—Bernoulli beam element.
Use a three-node element with two degrees of freedom (w, θ), where θ ≡ −dw/dx.
Derive the Hermite interpolation functions for the element. Compute the element
stiffness matrix and force vector.

Solution: Let w(x̄) ≈ c1 + c2x̄ + c3x̄
2 + c4x̄

3 + c5x̄
4 + c6x̄

5 where x̄ is the local
coordinate with the origin at node 1. Evaluating w and θ ≡ −dwdx at nodes 1, 2, and
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3 (i.e., at x̄ = 0, x̄ = h/2, and x̄ = h), we obtain

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w1
θ1
w2
θ2
w3
θ3

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 −1 0 0 0 0
1 h

2
h2

4
h3

8
h4

16
h5

32

0 −1 −h −3h24 −4h38 −5h416
1 h h2 h3 h4 h5

0 −1 −2h −3h2 −4h3 −5h4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c1
c2
c3
c4
c5
c6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
Inverting the equations, we obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c1
c2
c3
c4
c5
c6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=
1

h5

⎡⎢⎢⎢⎢⎢⎢⎣

h5 0 0 0 0 0
0 −h5 0 0 0 0

−23h3 6h4 16h3 8h4 7h3 h4

66h2 −13h3 −32h2 −32h3 −34h2 −5h3
−68h 12h2 16h 40h2 52h 8h2

24 −4h 0 −16h −24 −4h

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w1
θ1
w2
θ2
w3
θ3

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
The resulting interpolation functions (Hermite polynomials of degree 5) are

φ1 = 1− 23
x̄2

h2
+ 66

x̄3

h3
− 68 x̄

4

h4
+ 24

x̄5

h5

φ2 = −x̄
Ã
1− 6 x̄

h
+ 13

x̄2

h2
− 12 x̄

3

h3
+ 4

x̄4

h4

!

φ3 = 16
x̄2

h2

µ
1− x̄

h

¶2
φ4 = 8x̄

Ã
x̄

h
− 4 x̄

2

h2
+ 5

x̄3

h3
− 2 x̄

4

h4

!

φ5 =

Ã
7
x̄2

h2
− 34 x̄

3

h3
+ 52

x̄4

h4
− 24 x̄

5

h5

!

φ6 = x̄

Ã
x̄

h
− 5 x̄

2

h2
+ 8

x̄3

h3
− 4 x̄

4

h4

!

where x̄ is the element coordinate with the origin at node 1 (i.e., x = x̄+ xe1. where
x is the global coordinate and xe1 is the global coordinate of the first node of element
e).

New Problem 5.4: Compute element stiffness and mass matrices and force vector
(for uniform load) for the beam element of Problem 5.5.

Solution: The stiffness and mass matrices and force vector are obtained by
substituting φei (x) into the definitions (see the solution to New Problem 5.3). The
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stiffness matrix is

[K] =
EI

35h3

⎡⎢⎢⎢⎢⎢⎢⎣

5092 −1138h −3584 −1920h −1508 −242h
−1138h 332h2 896h 320h2 242h 38h2

−3584 896h 7168 0 −3584 −896h
−1920h 320h2 0 1280h2 1920h 320h2

−1508 242h −3584 1920h 5092 1138h
−242h 38h2 −896h 320h2 1138h 332h2

⎤⎥⎥⎥⎥⎥⎥⎦ .

The mass matrix is

[M ] =
ρAh

13860

⎡⎢⎢⎢⎢⎢⎢⎣

2092 −114h 880 160h 262 29h
−114h 8h2 −88h −12h2 −29h −3h2
880 −88h 5632 0 880 −88h
160h −12h2 0 128h2 −160h −12h2
262 −29h 880 −160h 2092 114h
29h −3h2 −88h −12h2 114h 8h2

⎤⎥⎥⎥⎥⎥⎥⎦ .

The force vector is given by

{f}T = f0h

60
{14 − h 32 0 14 h}

.

Problems 5.6—5.20: Use the minimum number of Euler—Bernoulli beam finite
elements to analyze the beam problems shown in Figs. P5.6—P5.20. In particular,
give:

(a) the assembled stiffness matrix and force vector;
(b) the specified global displacements and forces, and the equilibrium conditions;
(c) the condensed matrix equations for the primary unknowns (i.e., generalized
forces) separately.

Exploit symmetries, if any, in analyzing the problems. The instructor may also ask
the students to compute the secondary variables at points other than the nodes.

Solution to Problem 5.6: Divide the structure into a vertical part AB and
horizontal part BC, as shown in the figure. Then use one finite element in each
part. Note that part AB has both transverse and axial loads (i.e. bending and
extensional deformation), while part BC has only bending deformation. We consider
each part separately.
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Figure P5.6

Member AB. For bending deformation we have

2EI

b3

⎡⎢⎢⎣
6 −3b −6 −3b
−3b 2b2 3b b2

−6 3b 6 3b
−3b b2 3b 2b2

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
Q1
Q2
0
−Pc

⎫⎪⎪⎬⎪⎪⎭ (1)

Using U1 = U2 = 0 (at the fixed end) we obtain

2EI

b3

∙
6 3b
3b 2b2

¸½
U3
U4

¾
=

½
0
−Pc

¾
→ U3 ≡ uBx =

Pcb2

2EI
, U4 ≡ θBy = −

Pcb

EI
(2)

For extensional deformation of member AB, we obtain (using one linear element)

EA

b

∙
1 −1
1 1

¸½
Ua1
Ua2

¾
=

½
P1
P2

¾
(3)

Using Ua1 = 0 (at the fixed end) and P2 = −P , we obtain Ua2 = −uBz = −Pb/EA.
Member BC. For bending deformation we have

2EI

c3

∙
6 3c
3c 2c2

¸½
U3
U4

¾
=

½
P
0

¾
→ U3 ≡ uBCz =

Pc3

3EI
, U4 ≡ θBCy = −Pc

2

2EI
(4)

Thus, the vertical and horizontal deflections and rotation at point C are

uCz = u
B
z + u

BC
z − θBy · c =

Pb

EA
+
Pc3

3EI
+
Pc2b

EI
(down)

uCx = u
B
x =

Pcb2

2EI
(to the right)

θCy = θBy + θBCy = −Pcb
EI
− Pc

2

2EI
(CW) (5)
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Solution to Problem 5.7: Two-element mesh is used, with

h1 = 96 in., h2 = 48 in, EI = 6× 108 lb-in2., q0 = 400/12 lb/in.

Figure P5.7

The boundary conditions and equilibrium of internal forces require:

U1 = U3 = 0, Q
(1)
2 = 0, Q

(1)
4 +Q

(2)
2 = 0, Q

(2)
3 = 1000 lb, Q

(2)
4 = 0 (1)

The assembled equations are

104

⎡⎢⎢⎢⎢⎢⎢⎣

0.814 −39.063 −0.814 −39.063 0 0
2500 39.063 1250 0 0

7.324 −117.19 −6.510 −156.25
7500 156.25 2500

6.510 156.25
5000

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U1
U2
U3
U4
U5
U6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q
(1)
1

Q
(1)
2

Q
(1)
3 +Q

(2)
1

Q
(1)
4 +Q

(2)
2

Q
(2)
3

Q
(2)
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
+ 104

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.240
−3.840
0.240
3.840
0.000
0.000

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2)

The solution is

U2 = −0.003099, U4 = 0.003125, U5 = −0.15002 in., U6 = 0.003125

Solution to Problem 5.8: (a) For this problem, we have [K1] = [K2] and
{f2} = {0}. The assembled equations are given by

2EI

h3

⎡⎢⎢⎢⎢⎢⎢⎣

6 −3h −6 −3h 0 0
−3h 2h2 3h h2 0 0
−6 3h 6 + 6 3h− 3h −6 −3h
−3h h2 3h− 3h 2h2 + 2h2 3h h2

0 0 −6 3h 6 3h
0 0 −3h h2 3h 2h2

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U1
U2
U3
U4
U5
U6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
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 q0

EI = constant

 h 
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=
q0h

12

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

6
−h
6 + 0
h+ 0
0
0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Q11
Q12

Q13 +Q
2
1

Q14 +Q
2
2

Q23
Q24

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1)

Figure P5.8

(b) The specified generalized displacements and forces are

U1 = U2 = U5 = U6 = 0; Q
1
3 +Q

2
1 = 0, Q

1
4 +Q

2
2 = 0 (2)

(c) The condensed equations for the generalized displacements are,

2EI

h3

∙
12 0
0 4h2

¸½
U3
U4

¾
=
q0h

12

½
6
h

¾
(3)

For this problem the number of the unknown generalized displacements is two, and
hence Eqn. (3) can be solved easily:

U3 =
q0h

4

48EI
, U4 =

q0h
3

96EI
(4)

The condensed equations for the generalized forces (i.e., reactions at the clamped
ends) are given by

Q11 = −
q0h

2
− (6U3 + 3hU4)

2EI

h3
= −13

16
q0h

Q12 = −
q0h

2

12
+ (3hU3 + h

2U4)
2EI

h3
=
11

48
f0h

2

Q23 = −
2EI

h3
(−6U3 + 3hU4) = −

3

16
q0h

Q24 = −
2EI

h3
(−3hU3 + h2U4) = −

5

48
q0h

2 (5)
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200 lb/in.

Steel members (Es = 30×106 psi)

12 in
4 in4 in

1.5 in. dia. 1.5 in dia.

2 in dia.

200 lb/in.

6 in4 in1
2Q

1
1Q

2
2Q

02
1 =Q

• • •
01 =U

02 =U

06 =U

3U
4U

5U
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The bending moment from the definition is given by

Mc = −EI d
2w

dx2
|x=0.5h = EI

4X
i=1

u1i
d2φ1i
dx2

|x=0.5h

= −EI
Ã
U3
d2φ13
dx2

+ U4
d2φ14
dx2

!
|x=0.5h

=
q0h

2

96
(6)

Solution to Problem 5.9: We can exploit the symmetry about the middle of the
beam and use two beam elements to analyze the problem. We have

h1 = 4 in., (EI)1 = 30× 106 ×
π

64
(1.5)4 = 7.455× 106 lb-in2.

h2 = 6 in., (EI)2 = 30× 106 ×
π

64
(2)4 = 23.562× 106 lb-in2

and the element stiffness matrix is given by

2EeIe
h3e

⎡⎢⎢⎣
6 −3he −6 −3he
−3he 2h2e 3he h2e
−6 3he 6 3he
−3he h2e 3he 2h2e

⎤⎥⎥⎦
The force vector on the element is zero, and on the second element it is

{f (2)} = q0he
12

{6 − he 6 he}T

Figure P5.9
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Thus, we have the assembled equations

106

⎡⎢⎢⎢⎢⎢⎢⎣

1.398 −2.796 −1.398 −2.796 0 0
7.455 2.796 3.728 0 0

2.707 −1.131 −1.309 −3.927
23.16 3.927 7.854

symm. 1.309 3.927
15.71

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U1
U2
U3
U4
U5
U6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q
(1)
1

Q
(1)
2

Q
(1)
3 +Q

(2)
1

Q
(1)
4 +Q

(2)
2

Q
(2)
3

Q
(2)
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0
0
600
−600
600
600

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (1)

The boundary conditions are

w(0) = 0→ U1 = 0,
dw

dx
(0) = 0→ U2 = 0

dw

dx
(10) = 0→ U6 = 0,

dM

dx
(10) = 0→ Q

(2)
3 = 0

The equilibrium of internal forces require

Q
(1)
3 +Q

(2)
1 = 0, Q

(1)
4 +Q

(2)
2 = 0

Thus, the unknown displacements U3, U4 and U5 can be determined from equations
3 through 5 of (1). The generalized displacements are

U3 = 0.00252 in., U4 = −0.00083, U5 = 0.00546 in.

The reaction force and bending moment at the left support and internal bending
moment at the center of the beam can be determined from equations 1, 2, and 6 of
(1).

Solution to Problem 5.10: We must use two elements, with

h1 = 0.12 m, (EI)1 = 200× 109(0.03)4
π

64
= 7.952× 103 N-m2,

h2 = 0.12 m, (EI)2 = 200× 109(0.02)4
π

64
= 1.571× 103 N-m2
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200 N/m

Steel members
(Es = 200 GPa)

12 cm

2 cm dia.3 cm. dia.

12 cm

5 kN-m

1 kN
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Figure P5.10

The boundary conditions are

w0(0) = 0→ U1 = 0,
dw0
dx
(0) = 0→ U2 = 0, w0(24) = 0→ U5 = 0

M(24) =M0 → Q
(2)
4 =M0 = −5× 103 N-m

Equilibrium of the internal forces require

Q
(1)
3 +Q

(2)
1 = F0 = 10

3 N, Q
(1)
4 +Q

(2)
2 = 0

The assembled equations are

107

⎡⎢⎢⎢⎢⎢⎢⎣

5.5222 −0.3313 −5.5222 −0.3313 0 0
0.0265 0.3313 0.0133 0 0

6.6132 0.2659 −1.0910 −0.0655
0.0317 0.0655 0.0026

1.0910 0.0655
0.0052

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U1
U2
U3
U4
U5
U6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q
(1)
1

Q
(1)
2

Q
(1)
3 +Q

(2)
1

Q
(1)
4 +Q

(2)
2

Q
(2)
3

Q
(2)
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

12
−24
12
24
0
0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
The solution is

U3 = −0.3002 cm, U4 = 0.03767, U6 = −0.15184

Solution to Problem 5.11: The beam can be modeled with two elements of length
h=5m. We have [K1] = [K2] and {f1} = {f2}.
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Figure P5.11

(a) The assembled equations are

2EI

h3

⎡⎢⎢⎢⎢⎢⎢⎣

6 −3h −6 −3h 0 0
−3h 2h2 3h h2 0 0
−6 3h 6 + 6 3h− 3h −6 −3h
−3h h2 3h− 3h 2h2 + 2h2 3h h2

0 0 −6 3h 6 3h
0 0 −3h h2 3h 2h2

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U1
U2
U3
U4
U5
U6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

=
q0h

12

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

6
−h
6 + 6
h− h
6
h

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Q11
Q12

Q13 +Q
2
1

Q14 +Q
2
2

Q23
Q24

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1)

(b) The specified generalized displacements and forces are:

U1 = U2 = U3 = 0; Q
1
4 +Q

2
2 = 0, Q

2
3 = 0, Q

2
4 = 0 (2)

(c) The condensed equations for the unknown generalized displacements are (delete
the first, second and third rows and columns from the assembled equations in Eqn
(1))

2EI

h3

⎡⎣ 4h2 3h h2

3h 6 3h
h2 3h 2h2

⎤⎦⎧⎨⎩
U4
U5
U6

⎫⎬⎭ = q0h

12

⎧⎨⎩
h− h
6
h

⎫⎬⎭ (3)

The equations for the unknown generalized forces are⎧⎨⎩
Q11
Q12

Q13 +Q
2
1

⎫⎬⎭ = 2EI

h3

⎡⎣−3h 0 0
h2 0 0
0 6 −3h

⎤⎦⎧⎨⎩
U4
U5
U6

⎫⎬⎭− q0h12
⎧⎨⎩
6
−h
12

⎫⎬⎭ (4)

For the following values of the parameters, h = 5m, q0 = 400 N/m, and
EI = 4× 106 N-m2, solution of equations (3) gives

U4 = −0.0013021, U5 = 0.014323m, U6 = −0.0033854 (5)
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 h 

 q0

EI = constant

•

 a
 F0

 x
 h 

 F1

 h 

 q0

•
 a F0

 x
 h 

1
1Q 2

1
1
3 QQ + 1

1
1 FQ −=
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The bending moment at x = 7.5 m or x̄ = 2.5m is given by (note that U3 = 0)

M c = −EI d
2w

dx2
|x=7.5 = EI

4X
i=1

u2i
d2φ2i
dx2

|x=7.5

= EI

Ã
U3
d2φ21
dx2

+ U4
d2φ22
dx2

+ U5
d2φ23
dx2

+ U6
d2φ24
dx2

!
|x=7.5

= EI

Ã
U3
d2φ21
dx̄2

+ U4
d2φ22
dx̄2

+ U5
d2φ23
dx̄2

+ U6
d2φ24
dx̄2

!
|x̄=2.5

= −1, 666.67 N-m (6)

Solution to Problem 5.12: The assembled equations of the two-element mesh are

2EI

h3

⎡⎢⎢⎢⎢⎢⎢⎣

6 −3h −6 −3h 0 0
−3h 2h2 3h h2 0 0
−6 3h 6 + 6 3h− 3h −6 −3h
−3h h2 3h− 3h 2h2 + 2h2 3h h2

0 0 −6 3h 6 3h
0 0 −3h h2 3h 2h2

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U1
U2
U3
U4
U5
U6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Q11
Q12

Q13 +Q
2
1

Q14 +Q
2
2

Q23
Q24

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+
q0h

12

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0
0

0 + 6
0− h
6
h

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
The boundary and balance conditions are

U1 = 0, Q
1
2 = aF0, U3 = 0, Q

1
4 +Q

2
2 = 0, Q

2
3 = −F1, Q24 = 0

Figure P5.12
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 5 m 

w0z,

 q0 = 500 N/m

EI = constant

 5 m

 x
 5 m

F0 =1,000 N
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Hence, the condensed equations are

2EI

h3

⎡⎢⎢⎣
2h2 h2 0 0
h2 4h2 3h h2

0 3h 6 3h
0 h2 3h 2h2

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U2
U4
U5
U6

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
aF0
0
−F1
0

⎫⎪⎪⎬⎪⎪⎭+
q0h

12

⎧⎪⎪⎨⎪⎪⎩
0
−h
6
h

⎫⎪⎪⎬⎪⎪⎭
½

Q11
Q13 +Q

2
1

¾
=
2EI

h3

∙−3h −3h 0 0
3h 0 −6 −3h

¸⎧⎪⎪⎨⎪⎪⎩
U2
U4
U5
U6

⎫⎪⎪⎬⎪⎪⎭−
q0h

12

½
0
6

¾

Solution to Problem 5.13: The primary objective of this problem is to compute the
force vector for element 1. The distributed force is given by q(x) = q0(x/h) = 100x.
The components of force vector due to the distributed load are given by

q
(1)
i =

Z h

0
q(x)φi(x) dx =

q0
h

Z h

0
xφi(x) dx

where the interpolation functions in Eq. (9.58) are used (with x̄ = x). We obtain
(q0 = 500 and h = 5)

{q(1)} = q0h

60

⎧⎪⎪⎨⎪⎪⎩
9
−2h
21
3h

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩

375.00
−416.67
875.00
625.00

⎫⎪⎪⎬⎪⎪⎭
The boundary and balance conditions for the three-element mesh are

U1 = 0, U7 = 0, Q
(1)
2 = 0, Q

(1)
3 +Q

(2)
1 = 0

Q
(1)
4 +Q

(2)
2 = 0, Q

(2)
3 +Q

(3)
1 = 1, 000, Q

(2)
4 +Q

(3)
2 = 0, Q

(3)
4 = 0.

Figure P5.13
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dF0

hh

k
Linear elastic
 spring,

Rigid loading frame

q0

h = 4m,  EI = 50 MN-m2, k = 1 MPa
      F0 = 5 kN,  f0 = 1 kPa, d = 0.5 m

2EI EI
(a)

(b)

hh

z

x
1 2 3

1 2

1
1

1
1 Qf +

1
2

1
2 Qf +

0
1
2 Ff + 5

2
3 kUQ −=

2EI EI

00
2
1

1
3 FdMQQ ⋅−=−=+
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The solution is given by

Ū2 = −0.24826, Ū3 = 0.99537, Ū4 = −0.11111, Ū5 = 0.98380
Ū6 = 0.11806, Ū8 = 0.23611,

where Ūi = Ui(EI × 10−5)

Solution to Problem 5.14: (a) The assembled equations are

2EI

h3

⎡⎢⎢⎢⎢⎢⎢⎣

12 −6h −12 −6h 0 0
−6h 4h2 6h 2h2 0 0
−12 6h 12 + 6 6h− 3h −6 −3h
−6h 2h2 6h− 3h 4h2 + 2h2 3h h2

0 0 −6 3h 6 3h
0 0 −3h h2 3h 2h2

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U1
U2
U3
U4
U5
U6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Q11
Q12

Q13 +Q
2
1

Q14 +Q
2
2

Q23
Q24

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+
q0h

12

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

6
−h
6 + 0
h+ 0
0
0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(b) The boundary and balance conditions are

U1 = 0, U2 = 0, Q
1
3 +Q

2
1 = F0, Q

1
4 +Q

2
2 = −d · F0, Q23 = −kU5, Q24 = 0

Figure P5.14
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1,000 N/m

5 m 

2,500 N

5 m 

1,250 N-m
Linear spring,
k = 10-4 EI (N/m)

EI = 20×107 Nm2
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The condensed equations are

2EI

h3

⎡⎢⎢⎣
18 3h −6 −3h
3h 6h2 3h h2

−6 3h 6 + α 3h
−3h h2 3h 2h2

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U3
U4
U5
U6

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩

F0
−dF0
0
0

⎫⎪⎪⎬⎪⎪⎭+
q0h

12

⎧⎪⎪⎨⎪⎪⎩
6
h
0
0

⎫⎪⎪⎬⎪⎪⎭
½
Q11
Q12

¾
=
2EI

h3

∙−12 −6h
6h 2h2

¸½
U3
U4

¾
− q0h
12

½
6
−h

¾
where

α =
kh3

2EI

Solution to Problem 5.15: (a) For this problem, we have [K1] = [K2] and
{f2} = {0}. The assembled set of equations are

2EI

L3

⎡⎢⎢⎢⎢⎢⎢⎣

6 −3L −6 −3L 0 0
−3L 2L2 3L L2 0 0
−6 3L 6 + 6 3L− 3L −6 −3L
−3L L2 3L− 3L 2L2 + 2L2 3L L2

0 0 −6 3L 6 3L
0 0 −3L L2 3L 2L2

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U1
U2
U3
U4
U5
U6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Q11
Q12

Q13 +Q
2
1

Q14 +Q
2
2

Q23
Q24

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+
q0L

12

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

6
−L
6 + 0
L+ 0
0
0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1)

where L = 5 m, EI = 2× 106 N-m2 and q0 = 1, 000 N/m.

Figure P5.15
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(b) The specified generalized displacements and forces are

U1 = U2 = U3 = 0; Q
1
4 +Q

2
2 = −M0, Q

2
3 = F0 − kU5, Q24 = 0 (2)

(c) The condensed equations for the generalized displacements are,

2EI

L3

⎡⎣ 4L2 3L L2

3L 6 3L
L2 3L 2L2

⎤⎦⎧⎨⎩
U4
U5
U6

⎫⎬⎭ = −q0L12
⎧⎨⎩
L
0
0

⎫⎬⎭+
⎧⎨⎩
−M0

F0 − kU5
0

⎫⎬⎭ (3)

or

2EI

L3

⎡⎣ 4L2 3L L2

3L 6 + µ 3L
L2 3L 2L2

⎤⎦⎧⎨⎩
U4
U5
U6

⎫⎬⎭ = q0L

12

⎧⎨⎩
L
0
0

⎫⎬⎭+
⎧⎨⎩
−M0

F0
0

⎫⎬⎭ (4)

where µ = kL3/2EI. Using the given values of the parameters

L = 5, q0 = 1, 000, M0 = −1, 250, F0 = 2, 500, EI = 2× 106, k = 10−4EI
we obtain the solution,

U4 = −0.7237× 10−4, U5 = 0.0879× 10−2m, U6 = −0.2275× 10−3 (5)

The condensed equations for the generalized forces are given by⎧⎨⎩
Q11
Q12

Q13 +Q
2
1

⎫⎬⎭ = 2EI

L3

⎡⎣−3L 0 0
L2 0 0
0 −6 −3L

⎤⎦⎧⎨⎩
U4
U5
U6

⎫⎬⎭− q0L12
⎧⎨⎩
6
−L
6

⎫⎬⎭ (6)

The bending moment at a point, for example at x = 7.5 m or x̄ = 2.5m, can be
computed from (note that U3 = 0)

M c = EI
d2w

dx2
|x=7.5 = EI

4X
i=1

u2i
d2φ2i
dx2

|x=7.5

= EI

Ã
U3
d2φ21
dx2

+ U4
d2φ22
dx2

+ U5
d2φ23
dx2

+ U6
d2φ24
dx2

!
|x=7.5

= EI

Ã
U3
d2φ21
dx̄2

+ U4
d2φ22
dx̄2

+ U5
d2φ23
dx̄2

+ U6
d2φ24
dx̄2

!
|x̄=2.5

= 6, 206 N-m (7)

Solution to Problem 5.16: This problem can be modeled with four elements with
h1 = h2 = h3 = h4 = 5 ft. The main objective here is to represent the applied
loads appropriately. The global node 2 will have a downward load of 1,000 lbs. and
bending moment of —1,000 ft—lbs (CCW). The total size of the assembled global
stiffness matrix is 10× 10. This problem may be solved by FEM1D. The main steps
are outlined here.
The boundary and balance conditions are

U1 = 0, Q
1
2 = 0, Q

1
3 +Q

2
1 = 1, 000, Q

1
4 +Q

2
2 = 1, 000, U7 = 0, Q

2
3 +Q

3
1 = 0

Q24 +Q
3
2 = 0, Q

3
3 +Q

4
1 = unknown, Q

3
4 +Q

4
2 = 0, Q

4
3 = 0, Q

4
4 = 0
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Figure P5.16

(a) The condensed equations for the unknown generalized displacements is
given by deleting the rows and columns corresponding to the specified generalized
displacements. Thus, by deleting rows and columns 1 and 7, one obtains a 8 × 8
matrix equation.
(b) The unknown generalized forces Q11 and Q

3
3 + Q

4
1 can be computed from

equations 1 and 7 of the assembled set.
(c) The bending moment at x = 2.5 ft is given by

M c = EI
d2w

dx2
|x=2.5 = EI

4X
i=1

u1i
d2φ1i
dx2

|x=0.5h

= EI

Ã
U2
d2φ12
dx2

+ U3
d2φ13
dx2

+ U4
d2φ14
dx2

!
|x=2.5

The generalized displacements are given by

Ū2 = −1.2187, Ū3 = 4.5660 ft., Ū4 = −0.3021, Ū5 = 3.2986 ft.

Ū6 = 0.6979, Ū8 = −0.01042, Ū9 = 3.9583 ft., Ū10 = −1.0521

where Ūi = Ui(EI×10−4). The deflection, rotation, bending moment and shear force
at x = 2.5 ft. are given by

wc = 2.8559× 104/EI in, θc = −0.9895× 104/EI

M c = −1833.33 lb-ft, V c = −733.33 lbs
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Solution to Problem 5.17: (a) The assembled stiffness matrix of the beam
structure (the displacement degrees of freedom associated with the fixed end are
set to zero) is 8× 8:

EI

L3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 + 12 −6L− 6L −12 −6L 0 0 −12 6L
−6L− 6L 4L2 + 4L2 6L 4L2 0 0 6L 2L2

−12 6L 12 + 12 6L− 6L −12 −6L 0 0
−6L 2L2 6L− 6L 4L2 + 4L2 6L 2L2 0 0
0 0 −12 6L 12 6L 0 0
0 0 −6L 2L2 6L 4L2 0 0
−12 6L 0 0 0 0 12 6L
−6L 2L2 0 0 0 0 6L 4L2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
U1
U2
U3
U4
U5
U6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q11 +Q
3
1

Q12 +Q
3
2

Q13 +Q
2
1

Q14 +Q
2
2

Q23
Q24
Q33
Q34

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
+
q0L

12

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 + 6
0−L
0 + 0
0 + 0
0
0
6
L

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
Using the free-body-diagram of the springs, we can write

Q13 +Q
2
1 = k1(U5 − U1), Q14 +Q

2
2 = −k2U3, Q33 = −k2(U5 − U1)

Hence, the condensed equations become

EI

L3

⎡⎢⎢⎢⎢⎢⎢⎢⎣

24 + k1L3

EI 0 −12 −6L −k1L3EI 0
0 8L2 6L 2L2 0 0
−12 6L 12 + k2L3

EI 6L 0 0
−6L 2L2 6L 4L2 0 0
−k1L3EI 0 0 0 12 + k1L3

EI 6L
0 0 0 0 6L 4L2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U1
U2
U3
U4
U5
U6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=
q0L

12

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
6
L

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

Figure P5.17
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Solution to Problem 5.18: The problem can be represented by two elements:
h1 = 8 ft. and h2 = 6 ft. The main objective of this problem is to be able to compute
the force vector for element 1:

q
(1)
i =

Z h1

0
q(x)φi(x) dx =

Z h1

0
(a+ bx2)φi(x) dx

where a = q0, b = −q0/h2, q0 = 1, 000 lb/ft and h1 = 8 ft. The components of force
vector due to the distributed load can be computed using the above formula

{q(1)} = q0h1
60

⎧⎪⎪⎨⎪⎪⎩
26
−4h1
14
3h1

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩

3, 466.7
−4, 266.7
1, 866.7
3, 200.0

⎫⎪⎪⎬⎪⎪⎭

Figure P5.18

The specified boundary conditions and balance of secondary variables are

U1 = U2 = 0; Q
1
3 +Q

2
1 = 0, Q

1
4 +Q

2
2 = 0, Q

2
3 = 1, 000, Q

2
4 = 0.

The solution is (in ft and radians)

Ū3 = 0.3868, Ū4 = −0.6613, Ū5 = 0.7836, Ū6 = −0.6613

where Ūi = Ui(EI × 10−6). The bending moment and shear force at x = 3 ft., for
example, are M c = 11, 133 ft-lb. and V c = −2, 866.7 lb. The values at x = 0 are:
M(0) = 19, 733 ft-lbs. and V (0) = −2, 866.7 lbs, which are quite a bit in error. The
values obtained from equilibrium areM(0) = 24, 000 ft-lbs. and V (0) = −6, 333.3 lbs

Solution to Problem 5.19: The beam ABC (see Fig. P5.19) rests on simple
supports at points A and B and is supported by a cable at point C. The beam has
total length 2L and supports a uniform load of intensity q. Prior to the application
of the uniform load, there is no force in the cable nor is there any slack in the cable.
When the uniform load is applied, the beam deflects downward at point C and a
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tensile force T develops in the cable. We are required to determine the magnitude of
force T using the finite element method.

Figure P5.19

From Fig. P5.19, we have (using two elements) the following global system of
assembled equations:

2EI

L3

⎡⎢⎢⎢⎢⎢⎢⎣

6 −3L −6 −3L 0 0
−3L 2L2 3L L2 0 0
−6 3L 6 + 6 3L− 3L −6 −3L
−3L L2 3L− 3L 2L2 + 2L2 3L L2

0 0 −6 3L 6 3L
0 0 −3L L2 3L 2L2

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U1
U2
U3
U4
U5
U6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Q11
Q12

Q13 +Q
2
1

Q14 +Q
2
2

Q23
Q24

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
− qL
12

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

6
−L
6 + 6
L− L
6
L

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1)

The boundary conditions of the problem are

U1 = 0, U3 = 0, Q
1
2 = 0, Q

2
3 = T, Q

2
4 = 0 (2)

and the balance conditions are

Q13 +Q
2
1 = unknown reaction, Q

1
4 +Q

2
2 = 0 (3)

We know that the elongation in the cable is U5 that causes the tension T :

T =
EcAc
h

U5 = kU5, k =
EcAc
h

(4)
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Thus the condensed equations are

2EI

L3

⎡⎢⎢⎣
2L2 L2 0 0
L2 4L2 3L L2

0 3L 6 + α 3L
0 L2 3L 2L2

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U2
U4
U5
U6

⎫⎪⎪⎬⎪⎪⎭ = −
qL

12

⎧⎪⎪⎨⎪⎪⎩
−L
0
6
L

⎫⎪⎪⎬⎪⎪⎭ (5)

where α = kL3

2EI . Upon solving the equations, we obtain U5; then tension T in the
cable can be determined from the first equation in (4):

U5 =
3qL4

4(3EI + 2kL3)
, T =

EcAc
h

U5 (6)

Solution to New Problem 5.5: Using the symmetry at x = L/2 the problem can
be modeled by one element. The main objective of this problem should be to make
the student compute the force vector:

f1i =

Z h1

0
f(x)φi(x) dx =

Z h1

0
q0 sin

πx

L
φi(x) dx

The following integrals are useful:Z
x sin ax dx =

1

a2
sin ax− x

a
cos axZ

x2 sin ax dx =
2x

a2
sin ax− a

2x2 − 2
a3

cos axZ
x3 sin ax dx =

3a2x2 − 6
a4

sin ax− a
2x3 − 6x
a3

cos ax

For example, we have

f12 = q0

Z h

0
sin

πx

L
φ2(x) dx

= −q0
Z h

0
sin

πx

L

Ã
x− 2x

2

h
+
x3

h2

!
dx = −8q0L

2

π3

µ
1− 3

π

¶
f13 = q0

Z h

0
sin

πx

L
φ3(x) dx

= q0

Z h

0
sin

πx

L

Ã
3
x2

h2
− 2x

3

h3

!
dx =

24q0L

π3

µ
4

π
− 1

¶

where q0 is the magnitude of the transverse load acting downwards.
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Figure NP5.5

The specified boundary conditions are

U1 = U4 = 0, Q
1
2 = 0, Q

1
3 = 0

The condensed equations for the generalized displacements are

2EI

h3

∙
2h2 3h
3h 6

¸½
U2
U3

¾
=

⎧⎨⎩
f12

f13

⎫⎬⎭
The solution is,

U2 =
h

2EI

³
2f12 − hf13

´
, U3 =

h2

6EI

³
2hf13 − 3f12

´

Solution to Problem 5.20: We use a two-element mesh, with element 1 having
the hinge at its node 2, while element 2 is the usual beam element. The assembled
system of equations is

EI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
a3 − 3

a2 − 3
a3 0 0 0

− 3
a2

3
a

3
a2 0 0 0

− 3
a3

3
a2

3
a3 +

12
b3 − 6

b2 −12b3 − 6
b2

0 0 − 6
b2

4
b

6
b2

2
b

0 0 −12
b3

6
b2

12
b3

6
b2

0 0 − 6
b2

2
b

6
b2

4
b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w11
θ11

w12 = w
2
1

θ21
w22
θ22

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Q11
Q12

Q13 +Q
2
1

Q14 +Q
2
2

Q23
Q24

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+
q0b

12

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0
0
6
−b
6
b

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1)
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Figure P5.20

Using the boundary conditions

w11 = 0, θ11 = 0, w
2
2 = 0, θ22 = 0, Q

1
3 +Q

2
1 = F0, Q

1
4 +Q

2
2 = 0 (2)

we obtain the condensed equations

EI

∙ 3
a3 +

12
b3 − 6

b2

− 6
b2

4
b

¸½
w12 = w

2
1

θ21

¾
=
q0b

12

½
6
−b

¾
+

½
F0
0

¾
(3)

and the solution is given by

w12 = w
2
1 =

1

EI

Ã
q0b

4

8
+
F0b

3

3

!
a3

a3 + b3

θ21 =
1

EI

Ã
q0(8a

3 − b3)
48

+
F0a

3

2b

!
b3

a3 + b3

(4)

Problem 5.21: Analyze Problem 5.8 using the reduced-integration Timoshenko
beam finite element (RIE). Use a value of 5

6 for the shear correction factor and
ν = 0.25.

Solution: (a) The assembled equations are given by

µ
GAKs
4h

¶
⎡⎢⎢⎢⎢⎢⎢⎣

4 −2h −4 −2h 0 0
−2h h2 + α 2h h2 − α 0 0
−4 2h 4 + 4 2h− 2h −4 −2h
−2h h2 − α 2h− 2h 2(h2 + α) 2h h2 − α
0 0 −4 2h 4 2h
0 0 −2h h2 − α 2h h2 + α

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U1
U2
U3
U4
U5
U6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

=
q0h

2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
0

1 + 0
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Q11
Q12

Q13 +Q
2
1

Q14 +Q
2
2

Q23
Q24

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
, α =

4EI

GAKs
(1)
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Figure P5.21

(b) The specified generalized displacements and forces are

U1 = U2 = U5 = U6 = 0; Q
1
3 +Q

2
1 = 0, Q

1
4 +Q

2
2 = 0 (2)

(c) The condensed equations for the generalized displacements areµ
GAKs
4h

¶ ∙
8 0
0 2(h2 + α)

¸½
U3
U4

¾
=
q0h

2

½
1
0

¾
(3)

Solving Eqn. (3), we obtain (for ν = 0.25, A = 12I/H2 and Ks = 5/6 → α = H2, H
being the height of the beam)

U3 =
q0h

2

4GAKs
=
q0h

4

16EI

µ
H

h

¶2
, U4 = 0 (4)

which is clearly not a good solution; the Euler—Bernoulli beam solution is

U3 =
q0h

4

48EI
, U4 =

q0h
3

96EI

An increased number of elements will improve the result.

The condensed equations for the generalized forces (i.e., reactions at the clamped
ends) are given by

Q11 = −
q0h

2
− (4U3 + 2hU4)

GAKs
4h

= −3
4
q0h

Q12 = [2hU3 + (h
2 − α)U4]

GAKs
4h

=
1

8
q0h

2

Q23 = (−4U3 + 2hU4)
GAKs
4h

= −1
4
q0h

Q24 = [−2hU3 + (h2 − α)U4]
GAKs
4h

= −1
8
q0h

2 (5)
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Problem 5.22: Analyze Problem 5.8 using the consistent interpolation (quadratic
w and linear Ψ) Timoshenko beam element (CIE-1). Use a value of 56 for the shear
correction factor and ν = 0.25.

Solution: This problem differs from Problem 5.21 only in the load vector. (a) The
assembled equations are given by

µ
GAKs
4h

¶
⎡⎢⎢⎢⎢⎢⎢⎣

4 −2h −4 −2h 0 0
−2h h2 + α 2h h2 − α 0 0
−4 2h 4 + 4 2h− 2h −4 −2h
−2h h2 − α 2h− 2h 2(h2 + α) 2h h2 − α
0 0 −4 2h 4 2h
0 0 −2h h2 − α 2h h2 + α

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U1
U2
U3
U4
U5
U6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

=
q0h

12

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

6
−h
6 + 0
h
0
0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Q11
Q12

Q13 +Q
2
1

Q14 +Q
2
2

Q23
Q24

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1)

(b) The specified generalized displacements and forces are

U1 = U2 = U5 = U6 = 0; Q
1
3 +Q

2
1 = 0, Q

1
4 +Q

2
2 = 0 (2)

(c) The condensed equations for the generalized displacements areµ
GAKs
4h

¶ ∙
8 0
0 2(h2 + α)

¸½
U3
U4

¾
=
q0h

12

½
6
h

¾
, α =

4EI

GAKs
(3)

Solving Eqn. (3), we obtain, using the data ν = 0.25, A = 12I/H2, Ks = 5/6 and
α = H2

U3 =
q0h

2

4GAKs
, U4 =

q0h
3

6(GAKsh2 + 4EI)
=
q0h

3

24EI

"
1 +

µ
h

H

¶2#−1
(4)

The condensed equations for the generalized forces (i.e., reactions at the clamped
ends) are given by

Q11 = −
q0h

2
− (4U3 + 2hU4)

GAKs
4h

= −3q0h
4
− q0h

12(1 + α/h2)

Q12 =
q0h

2

12
+ [2hU3 + (h

2 − α)U4]
GAKs
4h

=
5q0h

2

24
+
1− α/h2

1 + α/h2
q0h

2

24

Q23 = (−4U3 + 2hU4)
GAKs
4h

= −q0h
4
+

1

1 + α/h2
q0h

12

Q24 = [−2hU3 + (h2 − α)U4]
GAKs
4h

= −q0h
2

8
+
1− α/h2

1 + α/h2
q0h

2

6
(5)
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Problem 5.23: Analyze Problem 5.8 using the consistent interpolation (cubic w
and quadratic Ψ) Timoshenko beam element (CIE-2). Use a value of 56 for the shear
correction factor and ν = 0.25.

Solution: The element matrix for the IIE (CIE-2) element is given by

µ
2EeIe
µeh3e

¶⎡⎢⎢⎣
6 −3he −6 −3he
−3he 2h2eΣe 3he h2eΘe
−6 3he 6 3he
−3he h2eΘe 3he 2h2eΣe

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
we1
Se1
we2
Se2

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
qe1
qe2
qe3
qe4

⎫⎪⎪⎬⎪⎪⎭+
⎧⎪⎪⎨⎪⎪⎩
Qe1
Qe2
Qe3
Qe4

⎫⎪⎪⎬⎪⎪⎭
where

Λe =
EeIe

GeAeKsh2e
, µe = 1 + 12Λe, Θe = 1− 6Λe, Σe = 1 + 3Λe

(a) The assembled equations are given by

µ
2EI

µh3

¶
⎡⎢⎢⎢⎢⎢⎢⎣

6 −3h −6 −3h 0 0
−3h 2h2Σ 3h h2Θ 0 0
−6 3h 12 0 −6 −3h
−3h h2Θ 0 4h2Σ 3h h2Θ
0 0 −6 3h 6 3h
0 0 −3h h2Θ 3h 2h2Σ

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U1
U2
U3
U4
U5
U6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

=
q0h

12

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

6
−h
6
h
0
0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Q11
Q12

Q13 +Q
2
1

Q14 +Q
2
2

Q23
Q24

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1)

(b) The specified generalized displacements and forces are

U1 = U2 = U5 = U6 = 0; Q
1
3 +Q

2
1 = 0, Q

1
4 +Q

2
2 = 0 (2)

(c) The condensed equations for the generalized displacements areµ
2EI

µh3

¶ ∙
12 0
0 4h2Σ

¸½
U3
U4

¾
=
q0h

12

½
6
h

¾
(3)

The generalized displacements are given by

U3 =
µq0h

4

48EI
= (1 + 3s2)

q0h
4

48EI
, U4 =

µq0h
3

96EIΣ
=

Ã
1 + 3s2

1 + 0.75s2

!
q0h

4

96EI
(4)
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where s = H/h is the element height-to-length ratio. The condensed equations for
the generalized forces (i.e., reactions at the clamped ends) are given by

Q11 = −
q0h

2
− (6U3 + 3hU4)

2EI

µh3
= −3q0h

4
−
µ

1

1 + 0.75s2

¶
q0h

16

Q12 =
q0h

2

12
+ [3hU3 + h

2ΘU4]
2EI

µh3
=
5q0h

2

24
+

Ã
1− 1.5s2
1 + 0.75s2

!
q0h

2

48

Q23 = (−6U3 + 3hU4)
2EI

µh3
= −q0h

4
+

µ
1

1 + 0.75s2

¶
q0h

16

Q24 = (−3hU3 + h2ΘU4)
2EI

µh3
== −q0h

2

8
+

Ã
1− 1.5s2
1 + 0.75s2

!
q0h

2

48
(5)

Compare these values against those of the Euler—Bernoulli beam solutions from
Problem 5.8:

U3 =
q0h

4

48EI
, U4 =

q0h
3

96EI

Q11 = −
13

16
q0h, Q12 =

11

48
f0h

2

Q23 = −
3

16
q0h, Q24 = −

5q0h
2

48
(6)

Clearly, the Euler—Bernoulli beam solution is obtained by setting s = 0 in Eqs. (4)
and (5).

Problem 5.24: Analyze the problem in Figure P5.24 using the consistent
interpolation (quadratic w and linear Ψ) Timoshenko beam element (CIE-1). Use
a value of 56 for the shear correction factor and ν = 0.25.

Figure P5.24

Solution: (a) The assembled equations are given by

µ
GAKs
4h

¶
⎡⎢⎢⎢⎢⎢⎢⎣

4 −2h −4 −2h 0 0
−2h h2 + α 2h h2 − α 0 0
−4 2h 4 + 4 2h− 2h −4 −2h
−2h h2 − α 2h− 2h 2(h2 + α) 2h h2 − α
0 0 −4 2h 4 2h
0 0 −2h h2 − α 2h h2 + α

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U1
U2
U3
U4
U5
U6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
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=
q0h

12

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

6
−h
6 + 6
h− h
6
h

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Q11
Q12

Q13 +Q
2
1

Q14 +Q
2
2

Q23
Q24

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1)

(b) The specified generalized displacements and forces are

U1 = U2 = U5 = U6 = 0; Q
1
3 +Q

2
1 = −kU3, Q14 +Q22 = 0 (2)

(c) The condensed equations for the generalized displacements are∙ 2GAKs
h + k 0

0 (h2 + α)GAKs
2h

¸½
U3
U4

¾
= q0h

½
1
0

¾
, α =

4EI

GAKs
(3)

Solving Eqn. (3), we obtain

U3 =
q0h

2

2GAKs + kh
, U4 = 0 (4)

The condensed equations for the generalized forces (i.e., reactions at the clamped
ends) are given by

Q11 = −
q0h

2
− GAKs

h
U3 = −

q0h

2
− q0h

2(1 + 0.5sk)

Q12 =
q0h

2

12
+
GAKs
2

U3 =
q0h

2

12
+

q0h
2

4(1 + 0.5sk)

Q23 = −
q0h

2
− GAKs

h
U3 = −

q0h

2
− q0h

2(1 + 0.5sk)

Q24 = −
q0h

2

12
− GAKs

2
U3 = −

q0h
2

12
− q0h

2

4(1 + 0.5sk)
(5)

where sk = kh/GAKs.

Problem 5.25: Analyze the problem in Figure P5.24 using the consistent
interpolation (cubic w and quadratic Ψ) Timoshenko beam element (CIE-2). Use
a value of 56 for the shear correction factor and ν = 0.25.

Solution: (a) The assembled equations are given by

µ
2EI

µh3

¶
⎡⎢⎢⎢⎢⎢⎢⎣

6 −3h −6 −3h 0 0
−3h 2h2Σ 3h h2Θ 0 0
−6 3h 12 0 −6 −3h
−3h h2Θ 0 4h2Σ 3h h2Θ
0 0 −6 3h 6 3h
0 0 −3h h2Θ 3h 2h2Σ

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U1
U2
U3
U4
U5
U6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
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=
q0h

12

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

6
−h
6 + 6
h− h
6
h

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Q11
Q12

Q13 +Q
2
1

Q14 +Q
2
2

Q23
Q24

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1)

where

Λe =
EeIe

GeAeKsh2e
, µe = 1 + 12Λe, Θe = 1− 6Λe, Σe = 1 + 3Λe

(b) The specified generalized displacements and forces are

U1 = U2 = U5 = U6 = 0; Q
1
3 +Q

2
1 = −kU3, Q14 +Q22 = 0 (2)

(c) The condensed equations for the generalized displacements are"
24EI
µh3 + k 0

0 8EIΣ
µh

#½
U3
U4

¾
= q0h

½
1
0

¾
(3)

The generalized displacements are given by

U3 =
µq0h

4

24EI + µkh3
=
q0h

4

24EI

µ
µ

1 + µsk/6

¶
, U4 = 0 (4)

where sk = kh3/4EI. The condensed equations for the generalized forces (i.e.,
reactions at the clamped ends) are given by

Q11 = −
q0h

2
− 12EI
µh3

U3 = −
q0h

2
− q0h

2

µ
1

1 + µsk/6

¶
Q12 =

q0h
2

12
+
6EI

µh2
U3 =

q0h
2

12
+ +

q0h
2

4

µ
1

1 + µsk/6

¶
Q23 = −

q0h

2
− 12EI
µh3

U3 = −
q0h

2
− q0h

2

µ
1

1 + µsk/6

¶
Q24 = −

q0h
2

12
− 6EI
µh2

U3 == −
q0h

2

12
−+q0h

2

4

µ
1

1 + µsk/6

¶
(5)

Problem 5.26: Consider a thin isotropic circular plate of radius R0 and suppose
that the plate is clamped at r = R0. If two finite elements (see Problem 5.2) are
used in the domain (0 ≤ r ≤ R0), give the boundary conditions on the primary and
secondary variables of the mesh if the plate is subjected to (a) a uniformly distributed
transverse load of intensity q0, and (b) point load Q0 at the center.
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Solution: The geometric boundary conditions of the problem require vanishing of
the slope dw/dr at r = 0 and r = R0, and deflection w at r = R0 irrespective of the
load. Thus, we have

(a) U2 = U5 = U6 = 0; Q
1
1 = 0, Q

1
3 +Q

2
1 = 0, Q

1
4 +Q

2
2 = 0

(b) U2 = U5 = U6 = 0; Q
1
1 = Q0, Q

1
3 +Q

2
1 = 0, Q

1
4 +Q

2
2 = 0

Problem 5.27: Repeat the circular plate problem of Problem 5.26 when a two-
element mesh of Timoshenko elements is used.

Solution: The geometric boundary conditions of the problem require vanishing of
the rotation Ψ at r = 0 and r = R0, and deflection w at r = R0 irrespective of the
load. Thus, we have

(a) U2 = U5 = U6 = 0; Q
1
1 = 0, Q

1
3 +Q

2
1 = 0, Q

1
4 +Q

2
2 = 0

(b) U2 = U5 = U6 = 0; Q
1
1 = Q0, Q

1
3 +Q

2
1 = 0, Q

1
4 +Q

2
2 = 0

Problems 5.28—5.35: For frame problems shown in Figs. P5.28—P5.35, give (a) the
transformed element matrices; (b) the assembled element matrices; (c) the condensed
matrix equations for the unknown generalized displacements and forces.

Solution to Problem 5.28: This is the same structure that was analyzed in Problem
5.6 using superposition. Here we wish to solve it as a frame problem. First note that
θ1 = −90◦ and θ2 = 0

◦. The element stiffness matrices are

[K1] = 108

⎡⎢⎢⎢⎢⎢⎢⎣

0.0002 0.0000 −0.0125 −0.0002 0.0000 −0.0125
0.0000 0.2500 0.0000 0.0000 −0.2500 0.0000
−0.0125 0.0000 1.0000 0.0125 0.0000 0.5000
−0.0002 0.0000 0.0125 0.0002 0.0000 0.0125
0.0000 −0.2500 0.0000 0.0000 0.2500 0.0000
−0.0125 0.0000 0.5000 0.0125 0.0000 1.0000

⎤⎥⎥⎥⎥⎥⎥⎦

[K2] = 108

⎡⎢⎢⎢⎢⎢⎢⎣

0.3125 0.0000 0.0000 −0.3125 0.0000 0.0000
0.0000 0.0004 −0.0195 0.0000 −0.0004 −0.0195
0.0000 −0.0195 1.2500 0.0000 0.0195 0.6250
−0.3125 0.0000 0.0000 0.3125 0.0000 0.0000
0.0000 −0.0004 0.0195 0.0000 0.0004 0.0195
0.0000 −0.0195 0.6250 0.0000 0.0195 1.2500

⎤⎥⎥⎥⎥⎥⎥⎦
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The assembled stiffness matrix is

[K] = 108

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0002 0.0000 −0.0125 −0.0002 0.0000 −0.0125
0.0000 0.2500 0.0000 0.0000 −0.2500 0.0000
−0.0125 0.0000 1.0000 0.0125 0.0000 0.5000
−0.0002 0.0000 0.0125 0.3127 0.0000 0.0125
0.0000 −0.2500 0.0000 0.0000 0.2504 −0.0195
0.0125 0.0000 0.5000 0.0125 −0.0195 2.2500
0.0000 0.0000 0.0000 −0.3125 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 −0.0004 0.0195
0.0000 0.0000 0.0000 0.0000 −0.0195 0.6250

0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
−0.3125 0.0000 0.0000
0.0000 −0.0004 −0.0195
0.0000 0.0195 0.6250
0.3125 0.0000 0.0000
0.0000 0.0004 0.0195
0.0000 0.0195 1.2500

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The boundary conditions are

U1 = U2 = U3 = 0

Q14 +Q
2
1 = 0, Q

1
5 +Q

2
2 = 0, Q

1
6 +Q

2
3 = 0, Q

2
4 = 0, Q

2
5 = P, Q

2
6 = 0

The condensed equations are obtained by deleting the first three rows and columns.
The solution is given by (using program FEM1D)

U4(= u
B
x ) = 0.2304, U5(= u

B
z ) = 4× 10−4, U6(= θBy ) = −0.00384

U7(= u
C
x ) = 0.2304, U8(= u

C
z ) = 0.46698, U9(= θCy ) = −0.005376

Figure 5.28
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Solution to Problem 5.29: For this frame problem, member 1 has the axial stiffness
of EA and bending stiffness 2EI and member 2 has EA and EI, where the values of
EA and EI are the same for both members. The point loads may be distributed to
the element nodes by the formula (5.2.20), f̄ei = F0φ

e
i (x0), where F0 is the intensity

of the point load and x0 is the distance along the member, measured from node 1 to
the point of load application.

The boundary conditions are:

U1 = U2 = U3 = U7 = U8 = U9 = 0

The condensed equations are

108

⎡⎣ 2.5042 0.0000 0.0250
0.0000 0.2502 −0.0125
0.0250 −0.0125 3.0000

⎤⎦⎧⎨⎩
U4
U5
U6

⎫⎬⎭ = 104
⎧⎨⎩
0.784
0.400
5.640

⎫⎬⎭
The displacements (Ui = Ūi × 10−4) are (in inches or radians):

Ū4 = 2.9448, Ū5 = 1.6917, Ū6 = 1.8625

The reactions (in lbs or lb-in) in member coordinates are:

Q̄11 = 4, 229, Q̄
1
2 = −2, 638, Q̄13 = 94, 960, Q̄14 = −4, 229

Q̄15 = −7, 362, Q̄16 = −138, 400, Q̄21 = 7, 362, Q̄22 = −4, 229
Q̄23 = 138, 400, Q̄

2
4 = −7, 362, Q̄25 = −3, 771, Q̄26 = −110, 900

Figure 5.29
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Solution to Problem 5.30: First note that θ1 = −45◦ and θ2 = 0
◦.

Figure 5.30

The boundary conditions are:

U1 = U2 = U3 = U7 = U8 = U9 = 0

The condensed equations are

108

⎡⎣ 0.09198 −0.02945 0.00491
−0.02945 0.02951 −0.00290
0.00491 −0.00290 4.85700

⎤⎦⎧⎨⎩
U4
U5
U6

⎫⎬⎭ = 103
⎧⎨⎩

0
20

−1, 600

⎫⎬⎭
The displacements are (in inches or radians):

U4 = 0.003295, U5 = 0.009742, U6 = −0.003292

The reactions (in kips or kip-in) in member coordinates are:

Q̄11 = 26.86, Q̄
1
2 = 2.26, Q̄

1
3 = −381.5, Q̄14 = −26.86

Q̄15 = −2.26, Q̄16 = −769.5, Q̄21 = 20.59, Q̄22 = −17.4
Q̄23 = 769.5, Q̄

2
4 = −20.59, Q̄25 = −22.60, Q̄26 = −2, 019

Solution to Problem 5.31: This frame is the same as that in Problem 5.29, except
that end A is hinged. The boundary conditions are:

U1 = U2 = U7 = U8 = U9 = 0
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The displacements (Ui = Ūi × 10−3) are (in inches or radians):

Ū3 = −0.5702, Ū4 = 0.3325, Ū5 = 0.1786, Ū6 = 0.3760

The reactions (in kips or kip-in) in member coordinates are:

Q̄11 = 4.466, Q̄
1
2 = −1.689, Q̄13 = 0, Q̄14 = −4.466

Q̄15 = −8.311, Q̄16 = −157.4, Q̄21 = 8.311, Q̄22 = −4.466
Q̄23 = 157.4, Q̄

2
4 = −8.311, Q̄25 = −3.534, Q̄26 = −101.4

Figure P5.31

Solution to Problem 5.32: This structure has three members with orientations
θ1 = −90◦, θ2 = 0◦ and θ3 = 90

◦. The boundary conditions are

U10 = U11 = U12 = 0

Figure P5.32
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For the choice of the data, the generalized displacements of the nodes of the
cantilevered frame are (solved using FEM1D)

U1 = 4.8421, U2 = 6.9311, U3 = 0.0354, U4 = −1.8180

U5 = 6.9311, U6 = 3.2640, U7 = −1.8186, U8 = 0.00064, U9 = 0.0230

The reactions at the fixed end are (in the global coordinates)

F10 = Q̄
3
5 = 8, 000 lb, F11 = Q̄

3
4 = −10, 000 lb, F12 = Q̄36 = −672, 000 lb-in

Solution to Problem 5.33: This is the same frame structure as in Problem 5.32,
except that end A is now on a roller support. Thus, the boundary conditions are

U2 = U10 = U11 = U12 = 0

Figure P5.33

The generalized displacements of the nodes of the frame are (solved using FEM1D)

U1 = 1.2780, U3 = 0.0044, U4 = 0.5581, U5 = 0.0004

U6 = 0.0017, U7 = 0.5575, U8 = 0.0002, U9 = −0.0017

The reactions at the fixed end are (in the global coordinates)

F10 = Q̄
3
5 = 8, 000 lb, F11 = Q̄

3
4 = −3, 554 lb, F12 = Q̄36 = 874, 900 lb-in

Solution to Problem 5.34: The displacement boundary conditions are

U1 = U2 = U3 = U10 = U11 = U12 = 0

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.
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and the non-zero force boundary conditions are

Q14 +Q
2
1 = 10, 000, Q

2
6 +Q

3
3 = 5, 000

Figure P5.34

The generalized displacements of the nodes of the frame are (solved using FEM1D)

U4 = 2114, U5 = 0.0015, U6 = −0.0015

U7 = 0.2094, U8 = 0.0015, U9 = −0.0015

The reactions at the fixed ends are (in the global coordinates)

F1 = Q̄
1
2 = −4, 992 lb, F2 = Q̄11 = −3, 703 lb, F3 = Q̄13 = 375, 800 lb-in

F10 = Q̄
3
5 = 5, 008 lb, F11 = Q̄

3
4 = −3, 703 lb, F12 = Q̄36 = 374, 800 lb-in

Solution to Problem 5.35: This is the same frame structure as in Problem 5.33,
except for the uniformly distributed load on member 2. The displacement and force
boundary conditions remain the same before.

The generalized displacements of the nodes of the frame are (solved using FEM1D)

U4 = 0.21375, U5 = 0.02252, U6 = −0.00635

U7 = 0.20697, U8 = 0.02548, U9 = 0.00334

The reactions at the fixed ends are (in the global coordinates)

F1 = Q̄
1
2 = 6, 968 lb, F2 = Q̄

1
1 = 56, 300 lb, F3 = Q̄

1
3 = −100, 600 lb-in

F10 = Q̄
3
5 = 16, 970 lb, F11 = Q̄

3
4 = −63, 700 lb, F12 = Q̄36 = 851, 200 lb-in
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Figure P5.35
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Chapter 6

EIGENVALUE AND

TIME-DEPENDENT

PROBLEMS

Problem 6.1: Determine the first two eigenvalues associated with the heat transfer
problem, whose governing equations and boundary conditions are given by

− ∂

∂x

µ
a
∂u

∂x

¶
+ b

∂u

∂t
+ cu = 0 for 0 < x < L

u(0) = 0,

µ
a
∂u

∂x
+ βu

¶¯̄̄̄
x=L

= 0

where a, b, c, and β are constants. Use (a) two linear finite elements, and (b) one
quadratic element in the domain to solve the problem.

Figure P6.1

Solution: Note that the problem at hand is a parabolic equation. Hence, the solution
is taken to be u(x, t) = U(x) exp(λt); where, λ is the eigenvalue.

(a) For the mesh of two linear elements, the assembled equations of the eigenvalue
problem are (see Section 6.1.4):

Ã
a

h

⎡⎣ 1 −1 0
−1 2 −1
0 −1 1

⎤⎦+ ch
6

⎡⎣ 2 1 0
1 4 1
0 1 2

⎤⎦− λ
bh

6

⎡⎣ 2 1 0
1 4 1
0 1 2

⎤⎦!⎧⎨⎩
U1
U2
U3

⎫⎬⎭
=

⎧⎨⎩
Q11

Q12 +Q
2
1

Q22

⎫⎬⎭
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where h = L/2. The boundary conditions are: U1 = 0, Q
1
2+Q

2
1 = 0, and Q

2
2 = −βU3.

It is clear that the term βU3, when taken to the left side, should add to the second
diagonal term of the stiffness matrix (because βU3 does not contain λ in order to add
it to the mass matrix). The condensed equations are given byÃ∙ 2a

h − ah
− ah

a
h + β

¸
+

∙ 4ch
6

ch
6

ch
6

2ch
6

¸
− λ

∙ 4bh
6

bh
6

bh
6

2bh
6

¸!½
U2
U3

¾
=

½
0
0

¾

Setting the determinant of the coefficient matrix to zero, we obtain the characteristic
polyniomial in λ.

(b) For the mesh of one quadratic element, the equations of the eigenvalue problem
are:Ã

a

3h

⎡⎣ 7 −8 1
−8 16 −8
1 −8 7

⎤⎦+ ch
30

⎡⎣ 4 2 −1
2 16 2
−1 2 4

⎤⎦!− λ
bh

30

⎡⎣ 4 2 −1
2 16 2
−1 2 4

⎤⎦!⎧⎨⎩
U1
U2
U3

⎫⎬⎭
=

⎧⎨⎩
Q11
Q12
Q13

⎫⎬⎭
where h = L. The boundary conditions are: U1 = 0, Q

1
2 = 0, and Q

1
3 = −kU3. The

condensed equations are given byÃ∙ 16a
3h − 8a3h
− 8a3h

7a
3h + β

¸
+

∙ 16ch
30

2ch
30

2ch
30

4ch
30

¸
− λ

∙ 16bh
30

2bh
30

2ch
30

4ch
30

¸!½
U2
U3

¾
=

½
0
0

¾

Setting the determinant of the coefficient matrix to zero, we obtain the characteristic
polyniomial.

Problem 6.2: Determine the first two longitudinal frequencies of a rod (E, A, L)
fixed at one end and spring-supported at the other:

−EA∂
2u

∂x2
+ ρA

∂2u

∂t2
= 0 for 0 < x < L

u(0) = 0,

µ
EA

du

dx
+ ku

¶ ¯̄̄̄
x=L

= 0

Use (a) two linear finite elements and (b) one quadratic element.
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Figure P6.2

Solution: Note that the problem at hand is a hyperbolic equation. Hence, the
eigenvalue is the square of the natural frequency of axial vibration, ω.

(a) For the mesh of two linear elements, the assembled equations of the eigenvalue
problem are (see Section 6.1.4):

Ã
EA

h

⎡⎣ 1 −1 0
−1 2 −1
0 −1 1

⎤⎦− ω2
ρAh

6

⎡⎣ 2 1 0
1 4 1
0 1 2

⎤⎦!⎧⎨⎩
U1
U2
U3

⎫⎬⎭ =
⎧⎨⎩

Q11
Q12 +Q

2
1

Q22

⎫⎬⎭
where h = L/2. The boundary conditions are: U1 = 0 and Q22 = −kU3. It is clear
that the term kU3, when taken to the left side, should add to the second diagonal
term of the stiffness matrix (because kU3 does not contain λ in order to add it to the
mass matrix). The condensed equations are given byÃ

EA

h

∙
2 −1
−1 1 + c

¸
− ω2

ρAh

6

∙
4 1
1 2

¸!½
U2
U3

¾
=

½
0
0

¾

where c = kh
EA . Setting the determinant of the coefficient matrix to zero, we obtain

the characteristic polyniomial,

7λ̄2 − (10 + 4c)λ̄+ (1 + 2c) = 0, where λ̄ = ρh2

6E
· ω2

This gives two roots, which are the two eigenvalues. The natural frequncies are
obtained from

ωi =
1

h

s
6Eλ̄i
ρ
, i = 1, 2

(b) For the mesh of one quadratic element, the equations of the eigenvalue problem
are: Ã

EA

3h

⎡⎣ 7 −8 1
−8 16 −8
1 −8 7

⎤⎦− ω2
ρAh

30

⎡⎣ 4 2 −1
2 16 2
−1 2 4

⎤⎦!⎧⎨⎩
U1
U2
U3

⎫⎬⎭ =
⎧⎨⎩
Q11
Q12
Q13

⎫⎬⎭
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where h = L. The boundary conditions are: U1 = 0 and Q
1
3 = −kU3. The condensed

equations are given byÃ
EA

3h

∙
16 −8
−8 7 + c

¸
− ω2

ρAh

30

∙
16 2
2 4

¸!½
U2
U3

¾
=

½
0
0

¾

where c = 3kh
EA . Setting the determinant of the coefficient matrix to zero, we obtain

the characteristic polyniomial,

15λ̄2 − (52 + 4c)λ̄+ (12 + 4c) = 0, where λ̄ = ρh2

10E
· ω2

This gives two roots, and the natural frequncies are obtained from

ωi =
1

h

s
10Eλ̄i
ρ

, i = 1, 2.

Problem 6.3: Determine the smallest natural frequency of a beam with clamped
ends, and of constant cross-sectional area A, moment of inertia I, and length L. Use
the symmetry and two Euler—Bernoulli beam elements in the half beam.

Solution: Note that the beam problem is a hyperbolic equation, hence the eigenvalue
is the square of the natural frequency of flexural vibration, ω. For a mesh of two
Euler—Bernoulli elements in a half beam (i.e., h = L/4), the assembled equations are
given by

Ã
2EI

h3

⎡⎢⎢⎢⎢⎢⎢⎣

6 −3h −6 −3h 0 0
−3h 2h2 3h h2 0 0
−6 3h 6 + 6 3h− 3h −6 −3h
−3h h2 3h− 3h 2h2 + 2h2 3h h2

0 0 −6 3h 6 3h
0 0 −3h h2 3h 2h2

⎤⎥⎥⎥⎥⎥⎥⎦

−ω2ρAh
420

⎡⎢⎢⎢⎢⎢⎢⎣

156 −22h 54 13h 0 0
−22h 4h2 −13h −3h2 0 0
54 −13h 156 + 156 22h− 22h 54 13h
−13h −3h2 22h− 22h 4h2 + 4h2 −13h −3h2
0 0 54 −13h 156 22h
0 0 13h −3h2 22h 4h2

⎤⎥⎥⎥⎥⎥⎥⎦
!
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U1
U2
U3
U4
U5
U6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Q11
Q12

Q13 +Q
2
1

Q14 +Q
2
2

Q23
Q24

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
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The boundary conditions are: U1 = U2 = U6 = 0 and Q23 = 0. The condensed
equations are given by

Ã
2EI

h3

⎡⎣ 12 0 −6
0 4h2 3h
−6 3h 6

⎤⎦− ω2
ρAh

420

⎡⎣ 312 0 54
0 8h2 −13h
54 −13h 156

⎤⎦!⎧⎨⎩
U3
U4
U5

⎫⎬⎭ =
⎧⎨⎩
0
0
0

⎫⎬⎭
The determinant of the coefficient matrix yields a cubic polynomial in ω2. Note
that by considering the half beam we restricted the natural frequencies to those of
symmetric modes. The antisymmetric modes (only) can be obtained by using U5 = 0
instead of U6 = 0.

Problem 6.4: Re-solve the above problem with two reduced-integration Timoshenko
beam (RIE) elements in the half-beam.

Solution: The assembled equations are given by

Ã
GAKs
4h

⎡⎢⎢⎢⎢⎢⎢⎣

4 −2h −4 −2h 0 0
−2h h2 + α 2h h2 − α 0 0
−4 2h 4 + 4 2h− 2h −4 −2h
−2h h2 − α 2h− 2h 2(h2 + α) 2h h2 − α
0 0 −4 2h 4 2h
0 0 −2h h2 − α 2h h2 + α

⎤⎥⎥⎥⎥⎥⎥⎦

−ω2h
6

⎡⎢⎢⎢⎢⎢⎢⎣

2A 0 A 0 0 0
0 2I 0 I 0 0
A 0 2A+ 2A 0 A 0
0 I 0 2I + 2I 0 I
0 0 A 0 2A 0
0 0 0 I 0 2I

⎤⎥⎥⎥⎥⎥⎥⎦
!
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U1
U2
U3
U4
U5
U6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Q11
Q12

Q13 +Q
2
1

Q14 +Q
2
2

Q23
Q24

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
where α = 4EI

GAKs
. Using the boundary conditions, U1 = U2 = U6 = 0, we write the

eigenvalue problem,

Ã
GAKs
4h

⎡⎣ 8 0 −4
0 2(h2 + α) 2h
−4 2h 4

⎤⎦− ω2
h

6

⎡⎣ 4A 0 A
0 4I 0
A 0 2A

⎤⎦!⎧⎨⎩
U3
U4
U5

⎫⎬⎭ =
⎧⎨⎩
0
0
0

⎫⎬⎭
Problem 6.5: Consider a beam (of Young’s modulus E, shear modulus G, area of
cross section A, second moment area about the axis of bending I, and length L) with
its left end (x = 0) clamped and its right end (x = L) is supported vertically by a
linear elastic spring (see Figure P6.5). Determine the fundamental natural frequency
using (a) one Euler-Bernoulli beam element and (b) one Timoshenko beam (IIE)
element (use the same mass matrix in both elements).
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Figure P6.5

Solution: One-element mesh is used. The boundary conditions are: U1 = U2 = 0
and Q13 = −kU3. The eigenvalue problems are formulated below.

(a) Euler—Bernoulli Beam ElementÃ
2EI

h3

∙
6 + c 3h
3h 2h2

¸
− ω2

ρAh

420

∙
156 22h
22h 4h2

¸!½
U3
U4

¾
=

½
0
0

¾

where c = kh3/2EI.

(b) Timoshenko Beam Element (RIE) (the same procedure applies to the CIE
element) Ã

GAKs
4h

∙
4 + c 2h
2h h2 + α

¸
− ω2

h

6

∙
2A 0
0 2I

¸!½
U3
U4

¾
=

½
0
0

¾

where c = 4kh
GAKs

. The characteristic polynomial is given by

140λ̄2 − (204 + 4c)λ̄+ (3 + 2c) = 0

where λ̄ = ρAh4

840EIω
2.

Problem 6.6: Determine the critical buckling load of a cantilever beam (A, I, L, E)
using (a) one Euler—Bernoulli beam element and (b) one Timoshenko beam element
(RIE).

Solution: One element mesh is used. The boundary conditions are: U1 = U2 = 0.
The eigenvalue problems are formulated below.

(a) Euler—Bernoulli Beam ElementÃ
2EI

h3

∙
6 3h
3h 2h2

¸
− Pcr

1

30h

∙
36 3h
3h 4h2

¸!½
U3
U4

¾
=

½
0
0

¾

where Pcr denotes the critical buckling load.
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(b) Timoshenko Beam ElementÃ
GAKs
4h

∙
4 2h
2h h2 + α

¸
− Pcr

1

h

∙
1 0
0 1

¸!½
U3
U4

¾
=

½
0
0

¾

where α = 4EI
GAKs

.

Problem 6.7: Consider a simply supported beam (of Young’s modulus E, mass
density ρ, area of cross section A, second moment of area about the axis of bending
I, and length L) with an elastic support at the center of the beam (see Figure P6.7).
Determine the fundamental natural frequency using the minimum number of Euler-
Bernoulli beam elements.

Problem 6.7

Solution: One element mesh is used. The boundary conditions are: U1 = 0, U4 = 0
and Q13 = −0.5kU3. Hence, we eliminate the first row and column and the last row
and column and obtain the eigenvalue problemÃ

2EI

h3

∙
2h2 3h
3h 6 + c

¸
− ω2

ρAh

420

∙
4h2 −13h
−13h 156

¸!½
U2
U3

¾
=

½
0
0

¾

where c = kh3/4EI, k = AcEc/hc, and h = L/2. The frequency equation is obtained
by setting the coefficient matrix to zero:¯̄̄̄

¯2EIh3
∙
2h2 3h
3h 6 + c

¸
− ω2

ρAh

420

∙
4h2 −13h
−13h 156

¸¯̄̄̄
¯ = 0

¯̄̄̄
¯
∙
2h2 3h
3h 6 + c

¸
− λ

∙
4h2 −13h
−13h 156

¸¯̄̄̄
¯ = 0, λ = ω2

ρAh4

840EI

The characteristic polynomial is

455λ2 − 2(129 + c)λ+ 3 + 2c = 0
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Problem 6.8: The natural vibration of a beam under applied axial compressive load
N0 is governed by the differential equation

EI
d4w

dx4
+N0d

2w

dx2
= λw

where λ denotes nondimensional frequency of natural vibration, and EI is the flexural
stiffness of the beam. (a) Determine the fundamental (i.e., smallest) natural frequency
ω of a cantilever beam (i.e., fixed at one end and free at the other end) of length L
with axial compressive load N0 using one beam element. (b) What is the buckling
load of the beam? You are required to give the final characteristic equation in each
case.

Solution: The finite element model of the equation is³
Ke − λMe −N0Ge

´
∆e = Qe

where

Ke
ij =

Z xb

xa
EI
d2φi
dx2

d2φj
dx2

dx, Me
ij =

Z xb

xa
φiφj dx, G

e
ij =

Z xb

xa

dφi
dx

dφj
dx

dx

and ∆e and Qe are the usual nodal displacement and force vectors. Here Ke is the
stiffness matrix, Me is the mass matrix and Ge is the geometric stiffness matrix are
given for the Euler—Bernoulli element as

Ke =
2EI

h3

⎡⎢⎢⎣
6 −3h −6 −3h
−3h 2h2 3h h2

−6 3h 6 3h
−3h h2 3h 2h2

⎤⎥⎥⎦

Me =
ch

420

⎡⎢⎢⎣
156 −22h 54 13h
−22h 4h2 −13h −3h2
54 −13h 156 22h
13h −3h2 22h 4h2

⎤⎥⎥⎦

Ge =
1

30h

⎡⎢⎢⎣
36 −3h −36 −3h
−3h 4h2 3h −h2
−36 3h 36 3h
−3h −h2 3h 4h2

⎤⎥⎥⎦
Using one element mesh in the beam, we obtain

Ã
2EI

L3

⎡⎢⎢⎣
6 −3L −6 −3L
−3L 2L2 3L L2

−6 3L 6 3L
−3L L2 3L 2L2

⎤⎥⎥⎦− λ
L

420

⎡⎢⎢⎣
156 −22L 54 13L
−22L 4L2 −13L −3L2
54 −13L 156 22L
13L −3L2 22L 4L2

⎤⎥⎥⎦

− N0

30L

⎡⎢⎢⎣
36 −3L −36 −3L
−3L 4L2 3L −L2
−36 3L 36 3L
−3L −L2 3L 4L2

⎤⎥⎥⎦
!⎧⎪⎪⎨⎪⎪⎩

W1

Θ1
W2

Θ2

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
Q1
Q2
Q3
Q4

⎫⎪⎪⎬⎪⎪⎭
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The boundary conditions are W1 = 0,Θ1 = 0, Q3 = 0 and Q4 = 0. Hence, the
condensed equations areÃ

2EI

L3

∙
6 3L
3L 2L2

¸
− λ

L

420

∙
156 22L
22L 4L2

¸
− N0

30L

∙
36 3L
3L 4L2

¸!½
W2

Θ2

¾
=

½
0
0

¾
Setting the determinant to zero and solving for the smaller root of the quadratic
equation in λ, we obtain the required fundamental frequency. The buckling load
N0 is calculated by setting λ = 0. For example, consider the case in which λ = 0
(λ̄ = (L2/60EI)N0)

12L2(1− 6λ̄)(1− 2λ̄)− 9L2(−λ̄)2 = 0

from which we obtain the lowest buckling load (λ̄1 = 0.0414)

(N0)min = 2.486
EI

L2

The critical buckling load as per the Euler—Bernoulli beam-column analysis is

Ncrit =
π2

4

EI

L2
= 2.467

EI

L2

(less than 0.8% error!).

Problem 6.9: Determine the fundamental natural frequency of the truss shown in
Fig. P6.9 (you are required only to formulate the problem).

Figure P6.9

Solution: Analogous to the global stiffness matrix, the element mass matrix in the
global coordinate system is given by

[Me] = [T e]T [M̄e][T e], [M̄e] =
ρeAehe
6

⎡⎢⎢⎣
2 0 1 0
0 0 0 0
1 0 2 0
0 0 0 0

⎤⎥⎥⎦
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[T e] =

⎡⎢⎢⎣
cosα sinα 0 0
− sinα cosα 0 0
0 0 cosα sinα
0 0 − sinα cosα

⎤⎥⎥⎦
We obtain,

[Me] =

⎡⎢⎢⎣
2 cos2 α 2 cosα sinα cos2 α cosα sinα

2 cosα sinα 2 sin2 α cosα sinα sin2 α
cos2 α cosα sinα 2 cos2 α 2 cosα sinα

cosα sinα sin2 α 2 cosα sinα 2 sin2 α

⎤⎥⎥⎦
For the present problem (see the solution to Problem 4.38), we have α1 = 45◦ and
α2 = tan

−1(2). The eigenvalue problem becomesÃ∙
K1
33 +K

2
11 K1

34 +K
2
12

K1
43 +K

2
21 K1

44 +K
2
22

¸
− ω2

∙
M1
33 +M

2
11 M1

34 +M
2
12

M1
43 +M

2
21 M1

44 +M
2
22

¸!½
U3
U4

¾
=

½
0
0

¾

Problem 6.10: Determine the fundamental natural frequency of the truss shown in
Fig. P6.10 (you are required only to formulate the problem).

Figure P6.10

Solution: The element mass matrix in the global coordinate is given by

[Me] = [T e]T [M̄e][T e]

[M̄e] =
ρeAehe
420

⎡⎢⎢⎢⎢⎢⎢⎣

140 0 0 70 0 0
0 156 −22h 0 54 13h
0 −22h 4h2 0 −13h −3h2
70 0 0 140 0 0
0 54 −13h 0 156 22h
0 13h −3h2 0 22h 4h2

⎤⎥⎥⎥⎥⎥⎥⎦
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and [T e] is defined in Eqn. (4.53a). The eigenvalue problem becomes,

Ã⎡⎣K1
44 +K

2
11 K1

45 +K
2
12 K1

46 +K
2
13

K1
54 +K

2
21 K1

55 +K
2
22 K1

56 +K
2
23

K1
64 +K

2
31 K1

65 +K
2
32 K1

66 +K
2
33

⎤⎦

−ω2
⎡⎣M1

44 +M
2
11 M1

45 +M
2
12 M1

46 +M
2
13

M1
54 +M

2
21 M1

55 +M
2
22 M1

56 +M
2
23

M1
64 +M

2
31 M1

65 +M
2
32 M1

66 +M
2
33

⎤⎦!⎧⎨⎩
U4
U5
U6

⎫⎬⎭ =
⎧⎨⎩
0
0
0

⎫⎬⎭
Problem 6.11: Determine the first two longitudinal natural frequencies of a rod
(A, E, L, m), fixed at one end and with an attached mass m2 at the other. Use
two linear elements. Hint: Note that the boundary conditions for the problem are
u(0) = 0 and (EA ∂u/∂x+m2 ∂

2u/∂t2)|x=L = 0.

Solution: For the mesh of two linear elements, the assembled equations of the
eigenvalue problem are:Ã

EA

h

⎡⎣ 1 −1 0
−1 2 −1
0 −1 1

⎤⎦− ω2
ρAh

6

⎡⎣ 2 1 0
1 4 1
0 1 2

⎤⎦!⎧⎨⎩
U1
U2
U3

⎫⎬⎭ =
⎧⎨⎩

Q11
Q12 +Q

2
1

Q22

⎫⎬⎭
where h = L/2. The boundary conditions are: U1 = 0 and Q

2
2 = m2ω

2U3. It is clear
that the term m2ω

2, when taken to the left side, should add to the second diagonal
term of the mass matrix (because kU3 does not contain λ in order to add it to the
stiffness matrix). The condensed equations are given byÃ

EA

h

∙
2 −1
−1 1

¸
− ω2

ρAh

6

∙
4 1
1 2 + c

¸!½
U2
U3

¾
=

½
0
0

¾

where c = 6m2
ρAh . Setting the determinant of the coefficient matrix to zero, we obtain

the characteristic polynomial.

Problem 6.12: The equation governing torsional vibration of a circular rod is

−GJ ∂
2φ

∂x2
+mJ

∂2φ

∂t2
= 0

where φ is the angular displacement, J the moment of inertia, G the shear modulus,
and m the density. Determine the fundamental torsional frequency of a rod with disk
(J1) attached at each end. Use the symmetry and (a) two linear elements, (b) one
quadratic element.

Solution: Note that the problem at hand is a hyperbolic equation, hence the
eigenvalue is the square of the natural frequency of torsional vibration, ω.
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(a) For the mesh of two linear elements, the assembled equations of the eigenvalue
problem are:

Ã
GJ

h

⎡⎣ 1 −1 0
−1 2 −1
0 −1 1

⎤⎦− ω2
mJh

6

⎡⎣ 2 1 0
1 4 1
0 1 2

⎤⎦!⎧⎨⎩
U1
U2
U3

⎫⎬⎭ =
⎧⎨⎩

Q11
Q12 +Q

2
1

Q22

⎫⎬⎭
where h = L/4. The boundary conditions are: Q11 = m1J1ω

2 and U3 = 0. The
condensed equations are given byÃ

GJ

h

∙
1 −1
−1 2

¸
− ω2

mJh

6

∙
2 + c 1
1 4

¸!½
U1
U2

¾
=

½
0
0

¾

where c = 6m1J1
mJh .

(b) For the mesh of one quadratic element, the equations of the eigenvalue problem
are: Ã

GJ

3h

⎡⎣ 7 −8 1
−8 16 −8
1 −8 7

⎤⎦− ω2
mJh

30

⎡⎣ 4 2 −1
2 16 2
−1 2 4

⎤⎦!⎧⎨⎩
U1
U2
U3

⎫⎬⎭ =
⎧⎨⎩
Q11
Q12
Q13

⎫⎬⎭
where h = L/2. The condensed equations are given byÃ

GJ

3h

∙
7 −8
−8 16

¸
− ω2

mJh

30

∙
4 + c 2
2 16

¸!½
U1
U2

¾
=

½
0
0

¾

where c = 30m1J1
mJh .

Problem 6.13: The equations governing the motion of a beam according to the
Timoshenko beam theory can be reduced to the single equation

a2
∂4w

∂x4
+

∂2w

∂t2
− b2

µ
1 +

E

kG

¶
∂4w

∂x2∂t2
+
b2m

kG

∂4w

∂t4
= 0

where a2 = EI/mA and b2 = I/A. Here E is the Young’s modulus, G is the shear
modulus, m is the mass per unit length, A is the area of cross sectin, and I is the
moment of inertia. Assuming that (b2m/kG) << 1 (i.e., neglect the last term in the
governing equation), formulate the finite element model of the (a) eigenvalue problem
for the determination of natural frequencies, and (b) fully discretized problem for the
determination of the transient response.

Solution: (a) This is a fourth—order hyperbolic differential equation. Let

w(x, t) =W (x)e−iωt
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and reduce the given equation to

a2
d4W

dx4
− ω2W + ω2b2

µ
1 +

E

kG

¶
d2W

dx2
= 0

The weak form of the equation is given by

0 =

Z xb

xa
v

"
a2
d4W

dx4
− ω2

Ã
W − c2d

2W

dx2

!#
dx

=

Z xb

xa

"
a2
d2v

dx2
d2W

dx2
− ω2

µ
vW + c2

dv

dx

dW

dx

¶#
dx

− v(xa)Q1 − v(xb)Q3 −
µ
−dv
dx

¶
A
Q2 −

µ
−dv
dx

¶
B
Q4

where v is the weight function, c2 = b2
³
1 + E

kG

´
, and

Q1 =

"
a2
d3W

dx3
+ ω2c2

dW

dx

#
A

, Q3 = −
"
a2
d3W

dx3
+ ω2c2

dW

dx

#
B

Q2 =

"
a2
d2W

dx2

#
A

, Q4 = −
"
a2
d2W

dx2

#
B

The finite element model is given by

([Ke]− ω2[Me]){∆e} = {Qe}
where

W (x) ≈
4X
j=1

∆ejϕ
e
j(x)

and

Ke
ij =

Z xb

xa
a2
d2ϕi
dx2

d2ϕj
dx2

dx

Me
ij =

Z xb

xa

∙
ϕiϕj + b

2
µ
1 +

E

kG

¶
dϕi
dx

dϕj
dx

¸
dx

and ϕi are the Hermite family of interpolation functions.

(b) The semidiscrete weak form (neglecting the term involving the fourth-order
derivative with respect to t) is given by

0 =

Z xb

xa
v

"
a2
∂4w

∂x4
+

∂2w

∂t2
− b2

µ
1 +

E

kG

¶
∂4w

∂x2∂t2

#
dx

=

Z xb

xa

"
a2

∂2v

∂x2
∂2w

∂x2
+ v

∂2w

∂t2
+ c2

dv

dx

∂3w

∂x∂t2

#
dx

− v(xa)Q1 − v(xb)Q3 −
µ
−dv
dx

¶
A
Q2 −

µ
−dv
dx

¶
B
Q4
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wehere

Q1 =

"
a2
∂3w

∂x3
− c2 ∂3w

∂x∂t2

#
A

, Q3 = −
"
a2
∂3w

∂x3
− c2 ∂3w

∂x∂t2

#
B

Q2 =

"
a2
∂2w

∂x2

#
A

, Q4 = −
"
a2
∂2w

∂x2

#
B

The finite element model is given by

[Ke]{∆e}+ [Me]{∆̈e} = {Qe}

where Ke
ij and M

e
ij are the same as defined earlier.

The fully discretized finite element model can be obtained as discussed in Section
6.2.

Problem 6.14: Use the finite element model of Problem 6.13 to determine the
fundamental frequency of a simply supported beam.

Solution: This problem requires the evaluation of the element matrices [Ke] and
[Me] defined in Problem 6.10. These can be easily identified with the matrices already
given in the book when φi are the Hermite cubic interpolation functions: the stiffness
matrix is the same as that given in Eqn. (4.15); the mass matrix contains two parts,
and they are given by the matrices in Eqns. (6.26a) and (6.26b), respectively. We
have

[Ke] =
2a2

h3

⎡⎢⎢⎣
6 −3h −6 −3h
−3h 2h2 3h h2

−6 3h 6 3h
−3h h2 3h 2h2

⎤⎥⎥⎦ (1)

[Me] =
h

420

⎡⎢⎢⎣
156 −22h 54 13h
−22h 4h2 −13h −3h2
54 −13h 156 22h
13h −3h2 22h 2h2

⎤⎥⎥⎦+ c2

30h

⎡⎢⎢⎣
36 −3h −36 −3h
−3h 4h2 3h −h2
−36 3h 36 3h
−3h −h2 3h 4h2

⎤⎥⎥⎦ (2)

We use the symmetry to model one—half of the simply—supported beam with one
element to determine the fundamental frequency. We have

Ã
2a2

h3

⎡⎢⎢⎣
6 −3h −6 −3h
−3h 2h2 3h h2

−6 3h 6 3h
−3h h2 3h 2h2

⎤⎥⎥⎦− ω2
h

420

⎡⎢⎢⎣
156 −22h 54 13h
−22h 4h2 −13h −3h2
54 −13h 156 22h
13h −3h2 22h 2h2

⎤⎥⎥⎦

−ω2 c
2

30h

⎡⎢⎢⎣
36 −3h −36 −3h
−3h 4h2 3h −h2
−36 3h 36 3h
−3h −h2 3h 4h2

⎤⎥⎥⎦
!⎧⎪⎪⎨⎪⎪⎩

U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
Q11
Q12
Q13
Q14

⎫⎪⎪⎬⎪⎪⎭ (3)
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The boundary conditions are: U1 = U4 = 0. The eigenvalue problem becomes,"
2a2

h3

∙
2h2 3h
3h 6

¸
−ω2

Ã
h

420

∙
4h2 −13h
−13h 156

¸
+
c2

30h

∙
4h2 3h
3h 36

¸!#½
U2
U3

¾
=

½
0
0

¾
(4)

Problem 6.15: Find the critical buckling load Pcr by determining the eigenvalues
of the equation

EI
d4w

dx4
+ Pcr

d2w

dx2
= 0 for 0 < x < L

w(0) = w(L) = 0,

Ã
EI
d2w

dx2

! ¯̄̄̄
x=0

=

Ã
EI
d2w

dx2

! ¯̄̄̄
x=L

= 0

Use one Euler-Bernoulli element in the half-beam.

Solution: The finite element model of the equation is of the form,

[Ke]{ue}− Pcr[Ge]{ue} = {Qe}

where [Ke] is the stiffness matrix of the beam [see eqn. (4.15)], and [Ge] is given by
Eqn. (6.26b). We have

Ã
2EI

h3

⎡⎢⎢⎣
6 −3h −6 −3h
−3h 2h2 3h h2

−6 3h 6 3h
−3h h2 3h 2h2

⎤⎥⎥⎦− Pcr 130h
⎡⎢⎢⎣
36 −3h −36 −3h
−3h 4h2 3h −h2
−36 3h 36 3h
−3h −h2 3h 4h2

⎤⎥⎥⎦
!⎧⎪⎪⎨⎪⎪⎩

U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭

=

⎧⎪⎪⎨⎪⎪⎩
Q11
Q12
Q13
Q14

⎫⎪⎪⎬⎪⎪⎭ (1)

In view of the boundary conditions, U1 = U4 = 0, the eigenvalue problem becomes,Ã
2EI

h3

∙
2h2 3h
3h 6

¸
− Pcr

1

30h

∙
4h2 3h
3h 36

¸!#½
U2
U3

¾
=

½
0
0

¾
(2)

The characteristic polynomial is obtained by setting the determinant of the coefficient
matrix to zero:

(2h2 − 4h2λ)(6− 36λ)− (3h− 3hλ)2 = 0, where λ = h2

60EI
Pcr

or

45λ2 − 26λ+ 1 = 0, or λ1,2 =
13±

√
124

45
, λ2 = 0.041433
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Thus, Pcr is given by the smallest eigenvalue:

Pcr =
60EIλ2
h2

=
240EIλ2
L2

= 9.9439
EI

L2

Problem 6.16: Consider the partial differential equation arising in connection with
unsteady heat transfer in an insulated rod:

∂u

∂t
− ∂

∂x

µ
a
∂u

∂x

¶
= f for 0 < x < L

u(0, t) = 0, u(x, 0) = u0,

∙
a
∂u

∂x
+ β(u− u∞) + q̂

¸ ¯̄̄̄
x=L

= 0

Following the procedure outlined in Section 6.2, derive the semidiscrete variational
form, the semidiscrete finite element model, and the fully discretized finite element
equations for a typical element.

Solution: The weak form is given by (see Problem 3.3)

0 =

Z xb

xa

µ
w
∂u

∂t
+ a

dw

dx

∂u

∂x
−wf

¶
dx+ [βBw(xb)u(xb)− βAw(xa)u(xa)]

+ [βAu
A
∞w(xa)− βBu

B
∞w(xb)]− q(xb)w(xb) + q(xa)w(xa) (1)

and the semidiscrete finite element model is

[Me]{u̇e}+ [Ke]{ue} = {F e} (2)

where

Ke
ij =

Z xb

xa

µ
a
dψi
dx

dψj
dx

+ cψiψj

¶
dx+ [βBψi(xb)ψj(xb)− βAψi(xa)ψj(xa)]

Fi =

Z xb

xa
fψidx+ q(xb)ψi(xb)− q(xa)ψi(xa) + [βBuB∞ψi(xb)− βAu

A
∞ψi(xa)]

The fully discretized finite element model is the same as in Eqn. (6.41).

Problem 6.17: Using a two-element (linear) model and the semidiscrete finite
element equations derived in Problem 6.16, determine the nodal temperatures as
functions of time for the case in which a = 1, f = 0, u0 = 1, and q̂ = 0. Use
the Laplace transform technique [see Reddy (1986)] to solve the ordinary differential
equations in time.
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Solution: The boundary condition at x = 0 is u(0, t) = 0 and the initial condition
is u(x, 0) = u0. For the mesh of two linear elements, the semidiscrete finite element
model is given by

h

6

⎡⎣ 2 1 0
1 4 1
0 1 2

⎤⎦⎧⎨⎩
U̇1
U̇2
U̇3

⎫⎬⎭+ 1

h

⎡⎣ 1 −1 0
−1 2 −1
0 −1 1

⎤⎦⎧⎨⎩
U1
U2
U3

⎫⎬⎭ =
⎧⎨⎩

Q11
Q12 +Q

2
1

Q22

⎫⎬⎭ (1)

where h = L/2. The boundary conditions are: U1 = 0, Q12 + Q21 = 0, and
Q22 = −β(U3 − u∞). The initial conditions are U1 = 0, U2 = U3 = 1 at t = 0.
The condensed equations become,

h

6

∙
4 1
1 2

¸½
U̇2
U̇3

¾
+
1

h

∙
2 −1
−1 1 + βh

¸½
U2
U3

¾
=

½
0

βu∞

¾
(2)

♠ Using the Laplace transform method, one can obtain the solution of these
equations. The Laplace transform of a function u(t) is defined by

L(u(t)) ≡ ū =
Z ∞
0
e−stu(t)dt (3)

where s is the Laplace transform coordinate. The Laplace transform of u̇(t) is

L(u̇(t)) = sū− u(0) (4)

The Laplace transform of a constant is 1/s. The Laplace transform of Eqn. (2) is

s[M ]{ū}− [M ]{u(0)}+ [K]{ū} = 1

s
{F}

where [M ], [K] and {F} are obvious from Eqn. (2). We have"
2h
3 s+

2
h

h
6s−

1
h

h
6s−

1
h

h
3s+

(1+βh)
h

#½
Ū2
Ū3

¾
=
1

s

½
0

βu∞

¾
+
h

6

½
5
3

¾
(3)

Solving the equations, we obtain

Ū2 =
s+ c1 +

c2
s

s2 + c3s+ c4
≡ c1
(s− α1)(s− α2)

+
s

(s− α1)(s− α2)
+

c2
s(s− α1)(s− α2)

Ū3 =
s+ d1 +

d2
s

s2 + c3s+ c4
≡ d1
(s− α1)(s− α2)

+
s

(s− α1)(s− α2)
+

d2
s(s− α1)(s− α2)

where

c1 =
48 + 24βh

7h2
, c2 =

36βu∞
7h3

, c3 =
60 + 24βh

7h2
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c4 =
36 + 72βh

7h4
, d1 =

66 + 24βhu∞
7h2

, d2 =
72βu∞
7h3

The inverse transform can be computed using the identities

L−1
µ

1

(s+ α1)(s+ α2)

¶
=

1

α2 − α1

¡
e−α1 − e−α2

¢
L−1

µ
s

(s+ α1)(s+ α2)

¶
=

1

α1 − α2

¡
α1e

−α1 − α2e
−α2¢

L−1
µ
1

s

¶
= 1

Note that α1 and α2 are the roots of the equation

s2 +
12

7h2
(5 + 2βh)s+

36

7h4
(1 + 2βh) = 0

Problem 6.18: Consider a uniform bar of cross-sectional area A, modulus of
elasticity E, mass density m, and length L. The axial displacement under the action
of time-dependent axial forces is governed by the wave equation

∂2u

∂t2
= a2

∂2u

∂x2
, a =

µ
E

m

¶1/2
Determine the transient response [i.e., find u(x, t)] of the bar when the end x = 0 is
fixed and the end x = L is subjected to a force P0. Assume zero initial conditions.
Use one linear element to approximate the spatial variation of the solution, and solve
the resulting ordinary differential equation in time exactly to obtain

u2(x, t) =
P0L

AE

x

L
(1− cosαt), α =

√
3
a

L

Solution: We have (h = L)

EA

h

∙
1 −1
−1 1

¸½
U1
U2

¾
+
mAh

6

∙
2 1
1 2

¸!½
Ü1
Ü2

¾
=

½
Q11
Q12

¾
The boundary conditions are: U1 = 0 and Q

1
2 = P0. The condensed equation and the

initial conditions are,

Ü2(t) + α2U2(t) =
3P0
mAh

, I.C.: U2(0) = 0, U̇2(0) = 0

where α =
p
3E/mh2. The solution is of the form,

U2(t) = A cosαt+B sinαt+ C
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Using the initial conditions and the governing equation, we obtain A+C = 0, B = 0,
and C = P0h/EA. The final solution is

u(x, t) =
2X
i=1

Ui(t)ψi(x) = (A cosαt+C)ψ2(x)

=
P0h

EA
(1− cosαt) · x

h

Problem 6.19: Re-solve Problem 6.18 with a mesh of two linear elements. Use the
Laplace transform method to solve the two ordinary differential equations in time.

Solution: For the two element mesh, the condensed equations are (h = L/2)

EA

h

∙
2 −1
−1 1

¸½
U2
U3

¾
+
mAh

6

∙
4 1
1 2

¸!½
Ü2
Ü3

¾
=

½
0
P0

¾

Taking the Laplace transform of the equations and using the homogeneous initial
conditions, we obtain∙

2α+ 4βs2 −α+ βs2

−α+ βs2 α+ 2βs2

¸½
Ū2
Ū3

¾
=

½
0
P0
s

¾
where α = 2EA/L and β = mAL/12. The solution of the equations is

Ū2 =
P0(α− βs2)

s(s2 + p2)(s2 + q2)
, Ū3 =

2P0(α+ 2βs
2)

s(s2 + p2)(s2 + q2)

where p2 and q2 are the roots of the equation,

7β2s4 + 10αβs2 − α2 = 0, p2 =
5 + 3

√
2

7

24E

mL2
, q2 =

5− 3
√
2

7

24E

mL2

The solution for Ū2 and Ū3 can be expressed as (partial fractions),

Ū2 =
A1
s
+

B1s

s2 + p2
+

C1s

s2 + q2
, Ū3 =

A2
s
+

B2s

s2 + p2
+

C2s

s2 + q2

where

A1 =
P0α

p2q2
, B1 =

P0(α+ βp2)

(p4 − p2q2) , C1 =
P0(α+ βq2)

(q4 − p2q2)

A2 =
2P0α

p2q2
, B2 =

2P0(α− 2βp2)
(p4 − p2q2) , C2 =

2P0(α− 2βq2)
(q4 − p2q2)
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The Laplace inversion gives the solution,

U2(t) = A1 +B1 cos pt+C1 cos qt, U3(t) = A2 +B2 cos pt+ C2 cos qt

The two element finite element solution is

U(x, t) = U2(t)
2x

L
, for 0 ≤ x ≤ L

2

U(x, t) = U2(t)(2−
2x

L
) + U3(t)(

2x

L
− 1), for L

2
≤ x ≤ L

Problem 6.20: Solve Problem 6.18 when the right end is subjected to an axial force
F0 and supported by an axial spring of stiffness k.

Solution: The procedure is the same as in Problem 6.18, except for the boundary
condition, Q12 = F0 − kU2. The solution for U2(t) is given by (see Problem 6.18)

U2(t) = c(1− cosβt), c =
3F0

mALβ2
, β =

s
3E(1 + kh

EA)

mh2

and u(x, t) = U2(t)(x/h).

Problem 6.21: A bar of length L moving with velocity v0 strikes a spring of stiffness
k. Determine the motion u(x, t) from the instant when the end x = 0 strikes the
spring. Use one linear element.

Solution: Assume that the bar is moving at a velocity v0 to the right and impacts
the spring (see Figure P6.21). We consider the motion from the instant when the
bar impacts on the spring till it leaves the spring. Thus the boundary and initial
conditions for the problem are:

EA
∂u

∂x
= 0 at x = 0, EA

∂u

∂x
+ ku = 0 at x = L

u(x, 0) = 0, u̇(x, 0) = v0

Figure P6.21
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The one linear element mesh gives the equations

EA

L

∙
1 −1
−1 1

¸½
U1
U2

¾
+
mAL

6

∙
2 1
1 2

¸!½
Ü1
Ü2

¾
=

½
0
−kU2

¾
Using the Laplace transform method once again, we obtain∙

α+ 2βs2 −α+ βs2

−α+ βs2 1 + α+ 2βs2

¸½
Ū1
Ū2

¾
= 3βv0

½
1
1

¾
where α = kL/EA and β = mL2/6E. The solution of these equations is

Ū1 =
3βv0(2 + α+ βs2)

(s2 + p2)(s2 + q2)
, Ū2 =

3βv0(2 + βs2)

(s2 + p2)(s2 + q2)

or

Ū1 =
A1

s2 + p2
+

B1
s2 + q2

, Ū2 =
A2

s2 + p2
+

B2
s2 + q2

where p2 and q2 are the roots of the equation,

3β2s4 + 2β(3 + α)s2 + α = 0,

p2 =
(3 + α)−

√
α2 + 3α+ 9

3β
, q2 =

(3 + α) +
√
α2 + 3α+ 9

3β

and

A1 =
3βv0(−2 + βp2 − α)

p2 − q2 , B1 =
3βv0(2− βq2 + α)

p2 − q2

A2 =
3βv0(βp

2 − 2)
p2 − q2 , B2 =

3βv0(2− βq2)

p2 − q2

The Laplace inversion gives the result

U1(t) =
A1
p
sin pt+

B1
q
sin qt, U2(t) =

A2
p
sin pt+

B2
q
sin qt

and the finite element solution becomes,

U(x, t) = U1(t)(1−
x

L
) + U2(t)

x

L
, for 0 ≤ x ≤ L

Problem 6.22: A uniform rod of length L and mass m is fixed at x = 0 and loaded
with a mass M at x = L. Determine the motion u(x, t) of the system when the mass
M is subjected to a force P0. Use one linear element. Answer:

u2(t) = c(1− cosλt), c =
P0L

AE
, λ =

√
3
a

L

µ
3M

AL
+m

¶−1
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Solution: The boundary conditions are: U1 = 0 and Q
1
2 = −MÜ2+P0. The solution

is given by

U2(t) = c(1− cosλt), c =
P0L

AE
, λ =

√
3
E

L
(
3M

AL
+m)−1

Problem 6.23: The flow of liquid in a pipe, subjected to a surge-of-pressure wave
(i.e., a water hammer), experiences a surge pressure p, which is governed by the
equation

∂2p

∂t2
− c2 ∂

2p

∂x2
= 0, c2 =

1

m

µ
1

k
+
D

bE

¶−1
where m is the mass density and K the bulk modulus of the fluid, D is the diameter
and b the thickness of the pipe, and E is the modulus of elasticity of the pipe
material. Determine the pressure p(x, t) using one linear finite element, for the
following boundary and initial conditions:

p(0, t) = 0,
∂p

∂x
(L, t) = 0, p(x, 0) = p0, ṗ(x, 0) = 0

Solution: The boundary conditions should read p(0, t) = 0, ∂p∂x(L, t) = 0, and the
initial conditions should read p(x, 0) = p0, ṗ(x, 0) = 0. We have (h = L)

c2

h

∙
1 −1
−1 1

¸½
U1
U2

¾
+
h

6

∙
2 1
1 2

¸½
Ü1
Ü2

¾
=

½
Q11
Q12

¾
The boundary conditions are: U1 = 0 and Q

1
2 = 0. The condensed equation and the

initial conditions are,

Ü2(t) + α2U2(t) = 0, I.C.: U2(0) = p0, U̇2(0) = 0

where α =
√
3 c/h. The solution is of the form,

U2(t) = A cosαt+B sinαt+ C

Using the initial conditions of the governing equation, we obtain A+C = p0, B = 0,
and C = 0. The final solution is

u(x, t) =
2X
i=1

Ui(t)ψi(x) = A cosαtψ2(x)

= p0 cosαt ·
x

h
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Problem 6.24: Consider the problem of determining the temperature distribution
of a solid cylinder, initially at a uniform temperature T0 and cooled in a medium of
zero temperature (i.e., T∞ = 0). The governing equation of the problem is

ρc
∂T

∂t
− 1
r

∂

∂r

µ
rk

∂T

∂r

¶
= 0

The boundary conditions are

∂T

∂r
(0, t) = 0,

µ
rk

∂T

∂r
+ βT

¶ ¯̄̄̄
r=R

= 0

The initial condition is T (r, t) = T0. Determine the temperature distribution T (r, t)
using one linear element. Take R = 2.5 cm, T0 = 130

◦C, k = 215 W/(m ◦C), β = 525
W/(m ◦C), ρ = 2700 kg/m2, and c = 0.9 kJ/(kg◦C). What is the heat loss at the
surface? Formulate the problem.

Solution: We will not solve the problem but only formulate it. The finite element
model is given by

[Me]{u̇e}+ [Ke]{ue} = {Qe} (2)

where

Ke
ij = 2π

Z rB

rA

rk
dψi
dr

dψj
dr

dr

Me
ij = 2π

Z rB

rA

ρcrψiψj dr

The matrix [Ke] for a linear element is given at the bottom of page 104 of the text
book. We need to evaluate [Me]. For a linear element, we obtain

[Me] =
2πρch

12

∙
h+ 4rA h+ 2rA
h+ 2rA 3h+ 4rA

¸
The boundary conditions are: Q11 = 0 and Q12 = −2πβU2. The one element mesh
(h = R) gives the equations (rA = 0 for Element 1)

πk

∙
1 −1
−1 1 + 2β

¸½
U1
U2

¾
+
2πρch

12

∙
h h
h 3h

¸½
U̇1
U̇2

¾
=

½
0
0

¾
The equations can be solved using the Laplace transform method.

Problem 6.25: Determine the nondimensional temperature θ(r, t) in the region
bounded by two long cylindrical surfaces of radii R1 and R2. The dimensionless heat
conduction equation is

−1
r

∂

∂r

µ
r
∂θ

∂r

¶
+

∂θ

∂t
= 0
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with boundary and initial conditions

∂θ

∂r
(R1, t) = 0, θ(R2, t) = 1, θ(r, 0) = 0

Solution: The boundary conditions are: Q11 = 0 and U2 = 1. The one element mesh
(h = R2 −R1) gives the equations (rA = R1 for Element 1; see Problem 6.21)

π(R1 +R2)

h

∙
1 −1
−1 1

¸½
U1
U2

¾
+
2π

12

∙
h+ 4R1 h+ 2R1
h+ 2R1 3h+ 4R1

¸½
U̇1
U̇2

¾
=

½
0
Q12

¾
The condensed equation is

π(R1 +R2)

h
U1 +

2π(h+ 4R1)

12
U̇1 =

π(R1 +R2)

h

The solution to the equation is of the form, U1 = Ae−αt + B, where α = [π(R1 +
R2)/h]/[12π(h + 4R1)/12], and A and B are constants to be determined from the
initial condition and the governing equation for U1. We obtain, A + B = 0 and
B = 1. The solution becomes,

u(r, t) = U1(t)ψ1(r) + U2(t)ψ2(r) =
³
1− e−αt

´µ
1− r

h

¶
+
r

h

Problem 6.26: Show that (6.2.28a,b) and (6.2.29a,b) can be expressed in the
alternative form to Eq. (6.2.38)

[H]{ü}s+1 = {F̃}s+1

and define [H] and {F̃}s+1.

Solution: Consider the equations (6.44) and (6.45),

[M ]{ü}+ [K]{u} = {F} (1)

{u}s+1 = {u}s +∆t{u̇}s +
(∆t)2

2
[(1− 2β){ü}s + 2β{ü}s+1] (2)

Premultiplying Eq. (2) with [K]s+1 and substituting for [K]s+1{u}s+1 from Eq. (1),
we obtain the result,

[H]s+1{ü}s+1 = {F}s+1 − [K]s+1{b}s (3)
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Problem 6.27: A uniform cantilever beam of length L, moment of inertia I, modulus
of elasticity E, and mass m begins to vibrate with initial displacement

w(x, 0) = w0x
2/L2

and zero initial velocity. Find its displacement at the free end at any subsequent
time. Use one Euler-Bernoulli beam element to determine the solution. Solve the
resulting differential equations in time using the Laplace transform method.

Solution: Euler—Bernoulli Beam Element. For one element mesh (h = L), we have

2EI

h3

⎡⎢⎢⎣
6 −3h −6 −3h
−3h 2h2 3h h2

−6 3h 6 3h
−3h h2 3h 2h2

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭

+
ρAh

420

⎡⎢⎢⎣
156 −22h 54 13h
−22h 4h2 −13h −3h2
54 −13h 156 22h
13h −3h2 22h 2h2

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
Ü1
Ü2
Ü3
Ü4

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
Q11
Q12
Q13
Q14

⎫⎪⎪⎬⎪⎪⎭ (1)

The boundary conditions require U1 = U2 = 0, Q
1
3 = Q

1
4 = 0. The initial conditions

are U3 = w0, U4 = 2w0/L, U̇3 = 0 and U̇4 = 0. The condensed equations are:

2EI

h3

∙
6 3h
3h 2h2

¸½
U3
U4

¾
+
mAh

420

∙
156 22h
22h 2h2

¸½
Ü3
Ü4

¾
=

½
0
0

¾
(2)

which can be solved using the Laplace transform method.

Problem 6.28: Re-solve Problem 6.27 using one Timoshenko beam element.

Solution: For one element mesh, the condensed equations are

GAKs
4h

∙
4 2h
2h h2 + α

¸½
U3
U4

¾
+
mh

6

∙
2A 0
0 2I

¸½
Ü3
Ü4

¾
=

½
0
0

¾

where α = 4EI
GAKs

.
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Chapter 7

COMPUTER

IMPLEMENTATION

In Problems 7.1—7.4, compute the matrix coefficients using (a) the Newton—Cotes
integration formula and (b) the Gauss—Legendre quadrature. Use the appropriate
number of integration points, and verify the results with those obtained by the exact
integration.

Problem 7.1: Evaluate the integrals in Example 7.1.1 using the Newton—Cotes and
Gauss quadratures when ψi are the quadratic interpolation functions

ψ1 =

µ
1− x− xa

xb − xa

¶µ
1− 2 x− xa

xb − xa

¶
= −1

2
ξ(1− ξ)

ψ2 = 4

µ
x− xa
xb − xa

¶µ
1− x− xa

xb − xa

¶
= (1− ξ2)

ψ3 = −
x− xa
xb − xa

µ
1− 2 x− xa

xb − xa

¶
=
1

2
ξ(1 + ξ)

Solution: Note that the integrand F (x) in the integral of K12 is a cubic polynomial
(i.e., the degree is r = 3). Hence, we expect the three-point Newtone—Cotes or two-
point Gauss quadrature to yield the exact value. On the other hand, the integrand
of G12 is a fifth-order polynomial (i.e., the degree is r = 5). Hence, we expect the
five-point Newtone—Cotes or three-point Gauss quadrature to yield the exact value.
The exact values are

K12 = −
2

3(xb − xa)
(4x0 + 3xa + xb) , G12 =

xb − xa
15

(x0 + xa)

For convenience of using the Gauss quadrature, we write the given integrals in
terms of the normalized coordinate ξ:

K12 =

Z xb

xa
(x0 + x)

dψ1
dx

dψ2
dx
dx =

2

xb − xa

Z 1

−1
[x0 + x(ξ)]

dψ1
dξ

dψ2
dξ

dξ

=
2

xb − xa

Z 1

−1

∙
x0 + xa +

xb − xa
2

(1 + ξ)

¸ ³
ξ − 2ξ2

´
dξ
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G12 =

Z xb

xa
(x0 + x)ψ1ψ2 dx =

xb − xa
2

Z 1

−1
[x0 + x(ξ)]ψ1(ξ)ψ2(ξ) dξ

= −xb − xa
4

Z 1

−1

∙
x0 + xa +

xb − xa
2

(1 + ξ)

¸ ³
ξ − ξ2

´³
1− ξ2

´
dξ

(a) Newton—Cotes Quadrature: We evaluate K12 using r = 3; we have ξ1 = −1,
ξ2 = 0.0, ξ3 = 1, w1 = w3 =

1
6 , w2 =

4
6 , and

K12 = 2 ·
2

xb − xa

∙
−3(x0 + xa)

1

6
+ 0 · 4

6
− (x0 + xb)

1

6

¸
= − 2

3(xb − xa)
(4x0 + 3xa + xb)

We evaluate G12 using r = 5; we have ξ1 = −1, ξ2 = −0.5, ξ3 = 0.0, ξ4 = 0.5,
ξ5 = 1.0, w1 = w5 =

7
90 , w2 = w4 =

32
90 , w3 =

12
90 , and

G12 = −2 ·
xb − xa
4

∙
0 · 7
90
+ (x0 + xa +

xb − xa
2

(0.5))(−1
2
− 1
4
)(1− 1

4
) · 32
90

+0 · 12
90
+ (x0 + xa +

xb − xa
2

(1.5))(
1

2
− 1
4
)(1− 1

4
) · 32
90
+ 0 · 7

90

¸
=
xb − xa
15

(x0 + xa)

(b) Gauss—Legendre Quadrature: To evaluate K12, we use r = 2; we have ξ1 =
−0.57735 = − 1√

3
, ξ2 = 0.57735 =

1√
3
, w1 = w3 = 1 and

K12 =
2

xb − xa

(∙
x0 + xa +

xb − xa
2

(1− 1√
3
)

¸
(− 1√

3
− 2
3
)

+

∙
x0 + xa +

xb − xa
2

(1 +
1√
3
)

¸
(
1√
3
− 2
3
)

)

= − 2

3(xb − xa)
(4x0 + 3xa + xb)

To evaluate G12 we use r = 3; we have ξ1 = −0.77459 = −
q
3
5 , ξ2 = 0.0, ξ3 =

0.77459 =
q
3
5 , w1 = w3 = 0.55555 =

5
9 , w2 = 0.88888, and

G12 = −
xb − xa
4

(∙
x0 + xa +

xb − xa
2

(1− a)
¸
(−a− a2)(1− a2) · w + 0 · w2

+

∙
x0 + xa +

xb − xa
2

(1 + a)

¸
(a− a2)(1− a2) · w

)

=
xb − xa
2

a2(1− a2) (x0 + xa)w
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where a =
q
3
5 and w = 5

9 . Substitution of these values gives the result (which is

equal to the exact value).

Problem 7.2: Use Newton—Cotes integration formulas to evaluate

K11 =

Z xb

xa

Ã
d2φ1
dx2

!2
dx, G11 =

Z xb

xa
(φ1)

2 dx

where φi are the Hermite cubic interpolation functions [see Eq. (5.2.12) and
(5.2.13a,b)].

Solution: From Eqs. (5.2.12) and (5.2.13b) we have

φe1 = 1− 3
µ
x̄

he

¶2
+ 2

µ
x̄

he

¶3
,
d2φe1
dx̄2

= − 6
h2e

µ
1− 2 x̄

he

¶
Then for r = 1 (x̄1 = he/2, w1 = 1) we have

K11 =

Z he

0

Ã
d2φ1
dx̄2

!2
dx̄ = he

36

h4e

"µ
1− 2 x̄

he

¶2#
x̄=0.5he

= 0

G11 =

Z he

0
(φ1)

2 dx̄ = he

"
1− 3

µ
x̄

he

¶2
+ 2

µ
x̄

he

¶3#2
x̄=0.5he

= 0.25he

In the same way we can evaluate the integrals for different number of integration
points. The values of the coefficients as evaluated for different number (r) of
integration points are:

r = 1 : K11 = 0.0, G11 =
he
4

r = 2 : K11 =
12

h3e
(exact) , G11 = 0.398148he

r = 3 : G11 = 0.37he

r = 4 : G11 = 0.371429he[=
13he
35

] (exact)

Problem 7.3: Use Gauss quadrature to evaluate the integrals of Problem 7.2 for the
case in which the interpolation functions φi are the fifth-order Hermite polynomials
of Problem 5.4.

Solution: First note that [x̄ = (1 + ξ)h/2]

φ1 = 1− 10
x̄3

h3
+ 15

x̄4

h4
− 6 x̄

5

h5
= 1− 5

4
(1 + ξ)3 +

15

16
(1 + ξ)4 − 3

16
(1 + ξ)5

d2φi
dx2

=
4

h2e

d2φi
dξ2

,
d2φ1
dξ2

= −15
2
(1 + ξ) +

45

4
(1 + ξ)2 − 15

4
(1 + ξ)3

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.



182 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

We have

K11 =
2

h3e

Z +1

−1

Ã
d2φ1
dξ2

!2
dξ

=
2

h3e

Z +1

−1

∙
−15
2
(1 + ξ) +

45

4
(1 + ξ)2 − 15

4
(1 + ξ)3

¸2
dξ

Thus, K11 is a sixth-order polynomial of ξ. Hence, it can be evaluated exactly by
using N = [(6 + 1)/2] = 4:

K12 =
2

h3e

4X
I=1

WI

∙
−15
2
(1 + ξI) +

45

4
(1 + ξI)

2 − 15
4
(1 + ξI)

3
¸2

Similarly,

G11 =

Z he

0
(φ1)

2 dx̄ =
he
2

Z +1

−1

∙
1− 5

4
(1 + ξ)3 +

15

16
(1 + ξ)4 − 3

16
(1 + ξ)5

¸2
dξ

which is a tenth degree polynomial in ξ; hence, N = [(10 + 1)/2] = 6. We have

G11 =
he
2

6X
I=1

∙
1− 5

4
(1 + ξI)

3 +
15

16
(1 + ξI)

4 − 3

16
(1 + ξI)

5
¸2

The values obtained (with the help of Maple or Matlab programs) using the Gauss
quadrature are (exact)

K11 =
120

7h3e
, G11 =

181he
462

Problem 7.4: Repeat Problem 7.3 for the case in which the interpolation functions
φi are the fifth-order Hermite polynomials of Problem 5.5.

Solution: The interpolation function φ1 and its second derivative are [x̄ = (1+ξ)h/2]

φ1 = 1− 23
x̄2

h2
+ 66

x̄3

h3
− 68 x̄

4

h4
+ 24

x̄5

h5

= 1− 23
4
(1 + ξ)2 +

33

4
(1 + ξ)3 − 17

4
(1 + ξ)4 +

3

4
(1 + ξ)5

d2φ1
dξ2

= −23
2
+
99

2
(1 + ξ)− 51(1 + ξ)2 + 15(1 + ξ)3
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We have

K11 =
2

h3e

Z +1

−1

∙
−23
2
+
99

2
(1 + ξ)− 51(1 + ξ)2 + 15(1 + ξ)3

¸2
dξ

=
2

h3e

4X
I=1

WI

∙
−23
2
+
99

2
(1 + ξI)− 51(1 + ξI)

2 + 15(1 + ξI)
3
¸2

Similarly,

G11 =
he
2

Z +1

−1

∙
1− 23

4
(1 + ξ)2 +

33

4
(1 + ξ)3 − 17

4
(1 + ξ)4 +

3

4
(1 + ξ)5

¸2
dξ

=
he
2

6X
I=1

∙
1− 23

4
(1 + ξI)

2 +
33

4
(1 + ξI)

3 − 17
4
(1 + ξI)

4 +
3

4
(1 + ξI)

5
¸2

The values obtained using the Gauss quadrature are (exact)

K11 =
5092

35h3e
, G11 =

523he
3465

Problem 7.5: Solve the problem

− d
dx

µ
k
dT

dx

¶
= g0

µ
−kdT

dx

¶
x=0

= Q0,

∙
k
dT

dx
+ β(T − T∞)

¸
x=L

= 0

using two and four linear elements. Compare the results with the exact solution. Use
the following data: L = 0.02 m, k = 20 W/(m ◦C), g0 = 106 W/m2, Q0 = 102W,
T∞ = 50◦C, β = 500 W/(m ◦)C.

Solution: For this problem, we have MODEL = 1, NTYPE = 0, and ITEM = 0
(for a steady-state solution). Since a = k, c = 0 and f = g0 are the same for all
elements, we set ICONT = 1, AX0 = 20.0, and FX0=1.0E6. All other coefficients
are zero for this problem. For a uniform mesh of two linear elements (NEM = 2,
IELEM = 1), the increments DX(I) are [DX(1) is always the x-coordinate of node 1;
h = L/2 = 0.02/2 = 0.01]:

{DX} = {0.0, 0.01, 0.01}

The boundary conditions of the problem are

Q11 = Q0, Q22 = −β(T3 − T∞)
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There are no specified boundary conditions on the primary variable (NSPV=0) and
one specified non-zero boundary condition on the secondary variable (NSSV=1)
and the specified value is VSSV(1)=100. There is one mixed boundary condition
(NNBC=1) and the specified values are VNBC(1) (=β)=500 and TINF=50.0. The
complete input data required to analyze the problem using FEM1D are presented
in Box P7.5.1 and the output file is presented in Box 7.5.2. Input data and partial
output for the same problem for a mesh of four linear elements are presented in Box
P7.5.3.

Box P7.5.1: Input file from FEM1D for Problem 7.5.

Box P7.5.2: Edited output from FEM1D for Problem 7.5.
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Prob 7.5(a): Heat transfer problem with mixed boundary condition
   1  0  0                  MODEL, NTYPE, ITEM 
   1  2                     IELEM, NEM
   1  1                     ICONT, NPRNT
   0.0    0.01  0.01        DX(1)=X0; DX(2), DX(3)= Ele. lengths
  20.0    0.0               AX0,  AX1
   0.0    0.0               BX0,  BX1
   0.0    0.0               CX0, CX1
   1.0E6  0.0   0.0         FX0, FX1, FX2
   0                        NSPV
   1                NSSV
   1  1   1.0E2             ISSV(1,1), ISSV(1,2), VSSV(1) 
   1                        NNBC
   3  1   500.0   50.0      INBC(1,1),INBC(1,2), VNBC(1),TINF
   0                        NMPC 

 SOLUTION (values of PVs) at the NODES: 

    0.10030E+03  0.97750E+02  0.90200E+02
  

         X       P. Variable  S. Variable

    0.00000E+00  0.10030E+03 -0.51000E+04
    0.25000E-02  0.99662E+02 -0.51000E+04
    0.50000E-02  0.99025E+02 -0.51000E+04
    0.75000E-02  0.98388E+02 -0.51000E+04
    0.10000E-01  0.97750E+02 -0.51000E+04
    0.10000E-01  0.97750E+02 -0.15100E+05
    0.12500E-01  0.95862E+02 -0.15100E+05
    0.15000E-01  0.93975E+02 -0.15100E+05
    0.17500E-01  0.92088E+02 -0.15100E+05
    0.20000E-01  0.90200E+02 -0.15100E+05
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Box P7.5.3: Input and partial output for 4 linear elements.

The nodal values of temperature coincide with the exact solution

T (x) =
g0L

2

2k

Ã
1 +

2k

βL
− x

2

L2

!
+
q0L

k

µ
1 +

k

βL
− x
L

¶
+ T∞

−kdT
dx

= g0x+ q0

However, the flux values coincide with the exact only at the center of the elements.
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Prob 7.5(b): Heat transfer problem with mixed boundary condition
   1  0  0                 MODEL, NTYPE, ITEM
   1  4                    IELEM, NEM
   1  1                    ICONT, NPRNT
   0.0 0.005 0.005 0.005 0.005           DX(I)
  20.0    0.0              AX0,  AX1
   0.0    0.0              BX0,  BX1
   0.0    0.0              CX0, CX1
   1.0E6  0.0   0.0        FX0, FX1, FX2
   0                       NSPV
   1                       NSSV
   1  1   1.0E2            ISSV(1,1), ISSV(1,2), VSSV(1)
   1                       NNBC
   5  1   500.0   50.0     INBC(1,1),INBC(1,2), VNBC(1),TINF
   0                       NMPC

 SOLUTION (values of PVs) at the NODES:

 0.10030E+03  0.99650E+02  0.97750E+02  0.94600E+02  0.90200E+02

         X       P. Variable  S. Variable

    0.00000E+00  0.10030E+03 -0.26000E+04
    0.25000E-02  0.99975E+02 -0.26000E+04
    0.50000E-02  0.99650E+02 -0.26000E+04
    0.50000E-02  0.99650E+02 -0.76000E+04
    0.75000E-02  0.98700E+02 -0.76000E+04
    0.10000E-01  0.97750E+02 -0.76000E+04
    0.10000E-01  0.97750E+02 -0.12600E+05
    0.12500E-01  0.96175E+02 -0.12600E+05
    0.15000E-01  0.94600E+02 -0.12600E+05
    0.15000E-01  0.94600E+02 -0.17600E+05
    0.17500E-01  0.92400E+02 -0.17600E+05
    0.20000E-01  0.90200E+02 -0.17600E+05
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Problem 7.6: Solve Problem 7.5 using two quadratic elements.

Solution: For a uniform mesh of two quadratic elements (NEM = 2, IELEM = 2),
the increments DX(I) are {DX} = {0.0, 0.01, 0.01}. All other data remain the same.
The complete input data and partial output for the problem are presented in Box
P7.6. Note that the temperatures as well as the flux coincide with the exact solution
at the nodes.

Box P7.6: Input and partial output for 2 quadratic elements.
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 Prob 7.6: Heat transfer problem with mixed boundary condition
    1  0  0                 MODEL, NTYPE, ITEM
    2  2                    IELEM, NEM
    1  1                    ICONT, NPRNT
    0.0 0.01 0.01           DX(I)
   20.0    0.0              AX0,  AX1
    0.0    0.0              BX0,  BX1
    0.0    0.0              CX0, CX1
    1.0E6  0.0   0.0        FX0, FX1, FX2
    0                       NSPV
    1                       NSSV
    1  1   1.0E2            ISSV(1,1), ISSV(1,2), VSSV(1)
    1                       NNBC
    5  1   500.0   50.0     INBC(1,1),INBC(1,2), VNBC(1),TINF
    0                       NMPC

 SOLUTION (values of PVs) at the NODES:

 0.10030E+03  0.99650E+02  0.97750E+02  0.94600E+02  0.90200E+02

         X       P. Variable  S. Variable

    0.00000E+00  0.10030E+03 -0.10000E+03
    0.12500E-02  0.10025E+03 -0.13500E+04
    0.25000E-02  0.10013E+03 -0.26000E+04
    0.37500E-02  0.99930E+02 -0.38500E+04
    0.50000E-02  0.99650E+02 -0.51000E+04
    0.62500E-02  0.99292E+02 -0.63500E+04
    0.75000E-02  0.98856E+02 -0.76000E+04
    0.87500E-02  0.98342E+02 -0.88500E+04
    0.10000E-01  0.97750E+02 -0.10100E+05
    0.10000E-01  0.97750E+02 -0.10100E+05
    0.11250E-01  0.97080E+02 -0.11350E+05
    0.12500E-01  0.96331E+02 -0.12600E+05
    0.13750E-01  0.95505E+02 -0.13850E+05
    0.15000E-01  0.94600E+02 -0.15100E+05
    0.16250E-01  0.93617E+02 -0.16350E+05
    0.17500E-01  0.92556E+02 -0.17600E+05
    0.18750E-01  0.91417E+02 -0.18850E+05
    0.20000E-01  0.90200E+02 -0.20100E+05
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Problem 7.7: Solve the heat transfer problem in Example 4.3.3 (set 1), using (a)
four linear elements and (b) two quadratic elements (see Table 4.3.1).

Solution: For this problem, we have MODEL = 1, NTYPE = 0, and ITEM = 0.
Since a = k = 1, c = m2 and f = 0 are the same for all elements, we set ICONT = 1,
AX0 = 1.0, and CX0=1.0E6. All other coefficients are zero for this problem. For a
uniform mesh of four linear elements (NEM = 4, IELEM = 1), the increments DX(I)
are (h = L/4 = 0.05/4 = 0.0125): {DX} = {0.0, 0.0125, 0.0125, 0.0125, 0.0125}.
The boundary conditions of the problem are U1 = 300, Q42 = 0. There is

one specified boundary condition on primry variables (NSPV=1) and no specified
boundary conditions on the secondary variable with non-zero values (NSSV=0).
There are no mixed boundary conditions (NNBC=0). The input data and partial
output for a mesh of two quadratic elements are presented in Box P7.7. The finite
element solution coincides with the exact solution at the nodes.

Box P7.7: Input and partial output for 2 quadratic elements.
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 Prob 7.7: Heat transfer problem of Example 4.3.3
    1  0  0                 MODEL, NTYPE, ITEM
    2  2                    IELEM, NEM
    1  0                    ICONT, NPRNT
    0.0 0.025 0.025         DX(I)
    1.0    0.0              AX0,  AX1
    0.0    0.0              BX0,  BX1
  400.0    0.0              CX0, CX1
    0.0    0.0   0.0        FX0, FX1, FX2
    1                       NSPV
    1  1   3.0E2            ISPV(1,1), ISPV(1,2), VSPV(1)
    0                       NSSV
    0                       NNBC
    0                       NMPC

 SOLUTION (values of PVs) at the NODES:
 0.30000E+03  0.25170E+03  0.21923E+03  0.20052E+03  0.19442E+03

         x       P. Variable  S. Variable

    0.00000E+00  0.30000E+03 -0.44971E+04
    0.12500E-01  0.25170E+03 -0.32306E+04
    0.25000E-01  0.21923E+03 -0.19642E+04
    0.25000E-01  0.21923E+03 -0.20014E+04
    0.37500E-01  0.20052E+03 -0.99245E+03
    0.50000E-01  0.19442E+03  0.16472E+02
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Problem 7.8: Solve the axisymmetric problem in Example 4.3.4 using four quadratic
elements and compare the solution with that obtained using eight linear elements and
the exact solution of Table 4.3.2.

Solution: For this problem, we have MODEL = 1, NTYPE = 0, and ITEM =
0. We note that for axisymmetric problems, the whole equation is multiplied with
r. Therefore, a = k · r, and f = g0 · r for all elements. Thus, we set ICONT =
1, AX1 = k, and FX1= g0. All other coefficients are zero. For a uniform mesh
of four quadratic elements (NEM = 4, IELEM = 2), the increments DX(I) are
(h = L/4 = 0.01/4 = 0.0025): {DX} = {0.0, 0.0025, 0.0025, 0.0025, 0.0025}.
The boundary conditions of the problem are U9 = 100, Q11 = 0. There is

one specified boundary condition on primry variables (NSPV=1) and no specified
boundary conditions on the secondary variable with non-zero values (NSSV=0); there
are no mixed boundary conditions (NNBC=0). The input data and partial output
for a mesh of two quadratic elements are presented in Box P7.8. The finite element
solution coincides with the exact solution (see Table 4.3.2) at the nodes.

Box P7.8: Input and partial output for 4 quadratic elements.
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Prob 7.8: Axisymmetric problem of Example 4.3.4
   1  0  0             MODEL, NTYPE, ITEM 
   2  4                IELEM, NEM
   1  0                ICONT, NPRNT
   0.0 0.0025 0.0025 0.0025 0.0025       DX(I)
   0.0   20.0          AX0,  AX1
   0.0    0.0          BX0,  BX1
   0.0    0.0          CX0, CX1
   0.0    2.0E8   0.0  FX0, FX1, FX2
   1                   NSPV
   9 1  100.0          ISPV(1,1),ISPV(1,2),VSPV(1)
   0                   NSSV
   0                   NNBC
   0                   NMPC

SOLUTION (values of PVs) at the NODES: 
0.35000E+03  0.34609E+03  0.33437E+03  0.31484E+03  0.28750E+03
0.25234E+03  0.20937E+03  0.15859E+03  0.10000E+03
  
         X       P. Variable  S. Variable
  
    0.00000E+00  0.35000E+03  0.00000E+00
    0.25000E-02  0.33437E+03 -0.62500E+03
    0.25000E-02  0.33437E+03 -0.62500E+03
    0.50000E-02  0.28750E+03 -0.25000E+04
    0.50000E-02  0.28750E+03 -0.25000E+04
    0.75000E-02  0.20937E+03 -0.56250E+04
    0.75000E-02  0.20937E+03 -0.56250E+04
    0.10000E-01  0.10000E+03 -0.10000E+05
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Problem 7.9: Solve the one-dimensional flow problem of Example 4.4.1 (Set 1),
for dP/dx = −24, using eight linear elements (see Figure 4.4.1). Compare the finite
element results with the exact solution (4.4.20)1.

Solution: For this problem, we have MODEL = 1, NTYPE = 0, and ITEM = 0.
Since a = µ = 1 and f = −dP/dx are the same for all elements, we set ICONT
= 1, AX0 = µ, and FX0=24. All other coefficients are zero for this problem. For
a uniform mesh of four linear elements (NEM = 8, IELEM = 1), the increments
(note that the discretization along the y-axis) DX(I) are (h = 2L/8 = 0.25):
{DX} = {−1.0, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25}.
The boundary conditions of the problem are U1 = 0, U9 = 0. Thus, there are

two specified boundary conditions on primry variables (NSPV=2) and no specified
boundary conditions on the secondary variable (NSSV=0); also, there are no mixed
boundary conditions (NNBC=0). The input data and partial output for a mesh of
four linear elements are presented in Box P7.9. The finite element solution coincides
with the exact solution at the nodes.

Box P7.9: Input and partial output for 8 linear elements.
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Prob 7.9: The flow problem of Example 4.4.1, set 1
   1  0  0             MODEL, NTYPE, ITEM
   1  8                IELEM, NEM
   1  0                ICONT, NPRNT
  -1.0 0.25 0.25 0.25 0.25
       0.25 0.25 0.25 0.25    DX(I)
   1.0    0.0          AX0,  AX1
   0.0    0.0          BX0,  BX1
   0.0    0.0          CX0, CX1
  24.0    0.0   0.0    FX0, FX1, FX2
   2                   NSPV
   1 1    0.0          ISPV(1,1),ISPV(1,2),VSPV(1)
   9 1    0.0          ISPV(2,1),ISPV(2,2),VSPV(2)
   0                   NSSV
   0                   NNBC
   0                   NMPC

 SOLUTION (values of PVs) at the NODES:
 
 0.00000E+00  0.52500E+01  0.90000E+01  0.11250E+02  0.12000E+02
 0.11250E+02  0.90000E+01  0.52500E+01  0.00000E+00
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Problem 7.10: Solve the Couette flow problem in Example 4.4.1 (Set 2) using four
quadratic elements. Compare the finite element solution with the exact solution
(4.4.20)2.

Solution: For this problem, we have MODEL = 1, NTYPE = 0, ITEM = 0,
ICONT = 1, AX0 = µ and f = −dP/dx . All other coefficients are zero for this
problem. For a uniform mesh of four quadratic elements (NEM = 4, IELEM = 2), the
increments (note that the discretization along the y-axis) DX(I) are (h = 2L/4 = 0.5):
{DX} = {−1.0, 0.5, 0.5, 0.5, 0.5}.
The boundary conditions of the problem are U1 = 0, U5 = U0. Thus, there are

two specified boundary conditions on primry variables (NSPV=2) and no specified
boundary conditions on the secondary variable (NSSV=0); also, there are no mixed
boundary conditions (NNBC=0). The input data and partial output for a mesh of
four linear elements are presented in Box P7.10. The finite element solution coincides
with the exact solution at the nodes.

Box P7.10: Input and partial output for 4 quadratic elements.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

Prob 7.10: The flow problem of Example 4.4.1, set 2
   1  0  0             MODEL, NTYPE, ITEM 
   2  4                IELEM, NEM
   1  0                ICONT, NPRNT
  -1.0 0.5 0.5 0.5 0.5 DX(I)
   1.0    0.0          AX0,  AX1
   0.0    0.0          BX0,  BX1
   0.0    0.0          CX0, CX1
  24.0    0.0   0.0    FX0, FX1, FX2
   2                   NSPV
   1 1    0.0          ISPV(1,1),ISPV(1,2),VSPV(1)
   9 1    1.0          ISPV(2,1),ISPV(2,2),VSPV(2)
   0                   NSSV
   0                   NNBC
   0                   NMPC

SOLUTION (values of PVs) at the NODES: 

0.00000E+00  0.53750E+01  0.92500E+01  0.11625E+02  0.12500E+02
0.11875E+02  0.97500E+01  0.61250E+01  0.10000E+01
  
         X       P. Variable  S. Variable
  
   -0.10000E+01  0.00000E+00  0.24500E+02
   -0.50000E+00  0.92500E+01  0.12500E+02
    0.00000E+00  0.12500E+02  0.50000E+00
    0.50000E+00  0.97500E+01 -0.11500E+02
    0.10000E+01  0.10000E+01 -0.23500E+02
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Problem 7.11: Solve Problem 4.10 (heat flow in a composite wall) using the
minimum number linear finite elements.

Solution: For this problem, we have MODEL = 1, NTYPE = 0, and ITEM =
0. However, due to the discontinuous data (conductivities vary piece-wise), we have
ICONT = 0. For a non-uniform mesh of three elements (NEM = 3, IELEM = 1),
the element sizes DX(I) are: {DX} = {0.005, 0.0035, 0.0025}.
The boundary conditions of the problem are Q11 = −βL(U1 − TL∞) and Q32 =

−βL(U4−TR∞). Thus, there are two specified mixed boundary conditions (NNBC=2)
and no other boundary conditions. The input data and partial output for a mesh of
three linear elements are presented in Box P7.11.1.

Box P7.11: Input and partial output for three linear elements.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

Prob 7.11: Heat transfer in a composite wall (Prob 4.10)
  1  0  0                 MODEL, NTYPE, ITEM
  1  3                    IELEM, NEM
  0  2                    ICONT, NPRNT
  4                       NNM 
         
  1   2  0.05             NOD(1,J), GLX(1)    
 50.0    0.0              AX0, AX1      Data for
  0.0    0.0              BX0, BX1      Element 1
  0.0    0.0              CX0, CX1    
  0.0    0.0    0.0       FX0,FX1,FX2 

  2   3  0.035            NOD(2,J), GLX(2)    
 30.0    0.0              AX0, AX1      Data for
  0.0    0.0              BX0, BX1      Element 2
  0.0    0.0              CX0, CX1    
  0.0    0.0    0.0       FX0,FX1,FX2 

  3   4  0.025            NOD(3,J), GLX(3)    
 70.0    0.0              AX0, AX1      Data for
  0.0    0.0              BX0, BX1      Element 3
  0.0    0.0              CX0, CX1    
  0.0    0.0    0.0       FX0,FX1,FX2 

  0                       NSPV
  0                       NSSV
  2                       NNBC  (with transv. spring)
  1    1    10.0 100.0    INBC(1,1),INBC(1,2),VNBC(1),UREF(1)
  4    1    15.0  35.0    INBC(2,1),INBC(2,2),VNBC(1),UREF(2)
  0                       NMPC
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(Box P7.11) is continued from the previous page.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

    OUTPUT from program   FEM1DV2.5   by J. N. REDDY

Prob 7.11: Heat transfer in a composite wall (Prob 4.10)

    *** ANALYSIS OF MODEL 1, AND TYPE 0 PROBLEM ***
               (see the code below)

    MODEL=1,NTYPE=0: A problem described by MODEL EQ. 1
    MODEL=1,NTYPE=1: A circular DISK (PLANE STRESS)
    MODEL=1,NTYPE>1: A circular DISK (PLANE STRAIN)
    MODEL=2,NTYPE=0: A Timoshenko BEAM (RIE) problem
    MODEL=2,NTYPE=1: A Timoshenko PLATE (RIE) problem
    MODEL=2,NTYPE=2: A Timoshenko BEAM (CIE) problem
    MODEL=2,NTYPE>2: A Timoshenko PLATE (CIE) problem
    MODEL=3,NTYPE=0: A Euler-Bernoulli BEAM problem
    MODEL=3,NTYPE>0: A Euler-Bernoulli Circular plate
    MODEL=4,NTYPE=0: A plane TRUSS problem
    MODEL=4,NTYPE=1: A Euler-Bernoulli FRAME problem
    MODEL=4,NTYPE=2: A Timoshenko (CIE) FRAME problem

    Boundary information on mixed boundary cond.:

         1    1    0.10000E+02    0.10000E+03
         4    1    0.15000E+02    0.35000E+02

   Element coefficient matrix, [ELK-1]:
    0.10000E+04 -0.10000E+04
   -0.10000E+04  0.10000E+04

   Element coefficient matrix, [ELK-2]:
    0.85714E+03 -0.85714E+03
   -0.85714E+03  0.85714E+03

   Element coefficient matrix, [ELK-3]:
    0.28000E+04 -0.28000E+04
   -0.28000E+04  0.28000E+04

   Global coefficient matrix, [GLK-banded]:
    0.10100E+04 -0.10000E+04
                 0.18571E+04 -0.85714E+03
                              0.36571E+04 -0.28000E+04
                      sym.                 0.28150E+04

 SOLUTION (values of PVs) at the NODES:
    0.61582E+02  0.61198E+02  0.60749E+02  0.60612E+02
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Problem 7.12: Solve Problem 4.22 (axisymmetric problem of unconfined aquifer)
using the minimum number of linear finite elements.

Solution: For this problem, we have MODEL = 1, NTYPE = 0, and ITEM
= 0. For this axisymmetric problem, we have a = k · r (ICONT = 1,
AX1 = k). All other coefficients are zero. For the non-uniform mesh of six
linear elements (NEM = 6, IELEM = 1), the increments DX(I) are: {DX} =
{0.0, 10.0, 10.0, 20.0, 40.0, 60.0, 60.0}.
The boundary conditions of the problem are U7 = 50, Q11 = −150. There is

one specified boundary condition on primry variables (NSPV=1) and one specified
boundary condition on the secondary variable with non-zero values (NSSV=1); there
are no mixed boundary conditions (NNBC=0). The input data and partial output
for a mesh of two quadratic elements are presented in Box P7.12.1.

Box P7.12: Input and partial output for six linear elements.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

Prob 7.12: Axisymmetric unconfined aquifer (Prob 4.22)
   1  0  0             MODEL, NTYPE, ITEM
   1  6                IELEM, NEM
   1  0                ICONT, NPRNT
   0.0 10.0 10.0 20.0 40.0 60.0 60.0 DX(I)
   0.0   25.0          AX0,  AX1
   0.0    0.0          BX0,  BX1
   0.0    0.0          CX0, CX1
   0.0    0.0   0.0    FX0, FX1, FX2
   1                   NSPV
   7 1   50.0          ISPV(1,1),ISPV(1,2),VSPV(1)
   1                   NSSV
   1 1 -150.0          ISSV(1,1),ISSV(1,2),VSSV(1)
   0                   NNBC
   0                   NMPC

SOLUTION (values of PVs) at the NODES: 
0.20610E+02  0.32610E+02  0.36610E+02  0.40610E+02  0.44610E+02
0.47882E+02  0.50000E+02
  
         X       P. Variable  S. Variable
    0.00000E+00  0.20610E+02  0.00000E+00
    0.10000E+02  0.32610E+02  0.30000E+03
    0.10000E+02  0.32610E+02  0.10000E+03
    0.20000E+02  0.36610E+02  0.20000E+03
    0.20000E+02  0.36610E+02  0.10000E+03
    0.40000E+02  0.40610E+02  0.20000E+03
    0.40000E+02  0.40610E+02  0.10000E+03
    0.80000E+02  0.44610E+02  0.20000E+03
    0.80000E+02  0.44610E+02  0.10909E+03
    0.14000E+03  0.47882E+02  0.19091E+03
    0.14000E+03  0.47882E+02  0.12353E+03
    0.20000E+03  0.50000E+02  0.17647E+03
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Problem 7.13: Solve Problem 4.25.

Solution: The input data and edited output for the stepped composite bar of Figure
P7.13 are presented in Box P7.13.

Figure P7.13

Box P7.13: Input and partial output for Problem 7.13.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

Brass (Ab = 4 in2)
Steel (As = 8 in2)

16  in.

2000 lb

16  in. 16  in.

2500 lb

2500 lb

Aluminum (Aa = 6 in2 )

psi1015

psi1010

psi1030

6

6

6

×=

×=

×=

b

a

s

E

E

E

Problem 7.13: Stepped composite bar
  1  0  0              MODEL, NTYPE, ITEM
  1  3                 IELEM, NEM
  0  1                 ICONT, NPRNT
  4                    NNM

  1    2   16.0        NOD(1,J),GLX(1)
 24.0E7     0.0        AX0, AX1       Data for
  0.0       0.0        BX0, BX1       Element 1
  0.0       0.0        CX0, CX1
  0.0       0.0   0.0  FX0,FX1,FX2

  2    3   16.0        NOD(2,J),GLX(2)
  6.0E7     0.0        AX0, AX1       Data for
  0.0       0.0        BX0, BX1       Element 2
  0.0       0.0        CX0, CX1
  0.0       0.0   0.0  FX0,FX1,FX2

  3    4   16.0        NOD(3,J),GLX(3)
  6.0E7     0.0        AX0, AX1       Data for
  0.0       0.0        BX0, BX1       Element 3
  0.0       0.0        CX0, CX1
  0.0       0.0   0.0  FX0,FX1,FX2

   1                   NSPV
   1 1   0.0           ISPV(1,1),ISPV(1,2),VSPV(1)
   2                   NSSV
   2 1   5.0E3         ISSV(1,1),ISSV(1,2),VSSV(1)
   4 1  -2.0E3         ISSV(2,1),ISSV(2,2),VSSV(2)

   0                   NNBC
   0                   NMPC

 SOLUTION (values of PVs) at the NODES:

  0.00000E+00  0.20000E-03 -0.33333E-03 -0.86667E-03
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Problem 7.14: Solve Problem 4.27.

Solution: The input data and edited output for the stepped composite bar of Figure
P7.14 are presented in Box P7.14.

Figure P7.14

Box P7.14: Input and partial output for Problem 7.14.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

Aluminum Aluminum

d = 4 in.

   Steel    

12 in.
4 in.8 in.

d = 2 in.

Steel, Es = 30 × 106 psi,   Aluminum, Ea = 10 × 106 psi

 100 kips

 100 kips

k = 1010 lb/in.

 Problem 7.14: Spring-supported composite bar
   1  0  0              MODEL, NTYPE, ITEM
   1  3                 IELEM, NEM
   0  1                 ICONT, NPRNT
   4                    NNM
   1    2   12.0        NOD(1,J),GLX(1)
 125.6637E6  0.0        AX0, AX1       Data for
   0.0       0.0        BX0, BX1       Element 1
   0.0       0.0        CX0, CX1
   0.0       0.0   0.0  FX0,FX1,FX2
   2    3    8.0        NOD(2,J),GLX(2)
  31.4159E6  0.0        AX0, AX1       Data for
   0.0       0.0        BX0, BX1       Element 2
   0.0       0.0        CX0, CX1
   0.0       0.0   0.0  FX0,FX1,FX2
   3    4    4.0        NOD(3,J),GLX(3)
  94.2478E6  0.0        AX0, AX1       Data for
   0.0       0.0        BX0, BX1       Element 3
   0.0       0.0        CX0, CX1
   0.0       0.0   0.0  FX0,FX1,FX2
    1                   NSPV
    1 1   0.0           ISPV(1,1),ISPV(1,2),VSPV(1)
    1                   NSSV
    2 1  -2.0E5         ISSV(1,1),ISSV(1,2),VSSV(1)
    1                   NNBC
    4 1   1.0E10   0.0  INBC(1,1),INBC(1,2),VNBC(1),UREF(1)
    0                   NMPC

 SOLUTION (values of PVs) at the NODES:

    0.00000E+00 -0.14454E-01 -0.20690E-02 -0.48636E-05
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Problem 7.15: Solve Problem 4.35 using two linear elements.

Solution: The input data and edited output for the simply supported beam of Figure
P7.15 are presented in Box P7.15. Two linear elements are used. Note that a = 1
and

f(x) =
q0
2EI

³
Lx− x2

´
In the interest of non-dimensionalizing the solution, we have used L = 1, EI = 1 and
q0 = 1.

Figure P7.15

Box P7.15: Input and partial output for Problem 7.15.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

wz,

 q0

EI = constant

 x
 L 

 Problem 7.15: Simply-supported beam using the bar element
    1  0  0                 MODEL, NTYPE, ITEM
    1  2                    IELEM, NEM
    1  1                    ICONT, NPRNT
    0.0  0.5  0.5           DX(I)
    1.0    0.0              AX0, AX1
    0.0    0.0              BX0, BX1
    0.0    0.0              CX0, CX1
    0.0    0.5  -0.5        FX0, FX1, FX2
    2                       NSPV
    1  1   0.0              ISPV(1,1), ISPV(1,2), VSPV(1)
    3  1   0.0              ISPV(2,1), ISPV(2,2), VSPV(2)
    0                       NSSV
    0                       NNBC
    0                       NMPC

 SOLUTION (values of PVs) at the NODES:

    0.00000E+00  0.13021E-01  0.00000E+00
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Problem 7.16: Determine the forces and elongations in the wires AB and CD shown
in Figure P7.16. Each wire has a cross-sectional area of A = 0.03 in2 and modulus of
elasticity E = 30× 106 psi.

Figure P7.16

Solution: This problem is similar to Examples 4.6.3 and 7.3.6. The constraint
conditions are

U2
b
=
U4
2b
=
U5
3b
→ 3U2 − U5 = 0, 1.5U4 − U5 = 0

The input data and modified output are presented in Box P7.16. The forces are found
to be FAB = 420 lbs and FCD = 840 lbs, and the elongations are δAB = 0.037334 in.
and δCD = 0.074666 in., while the point E deflects by δE = 0.112 in. The input data
and edited output are presented in Box P7.16.

Box P7.16: Input and partial output for Problem 7.16.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

?

P
in.80 b

b

b1 2

3 4

5

2U

4U

EU

A B

C D

Problem 7.16: DEFORMATION OF A CONSTRAINED STRUCTURE
   1  0  0              MODEL, NTYPE, ITEM
   1  3                 IELEM, NEM
   0  1                 ICONT, NPRNT
   5                    NNM

   1      3      0.4    NOD(1,J)
   3.2E6 0.0            AX0, AX1      Data for
   0.0    0.0           BX0, BX1      Element 1
   0.0    0.0           CX0, CX1
   0.0    0.0    0.0    FX0,FX1,FX2

   2      4      0.8    NOD(2,J)
   3.2E6 0.0            AX0, AX1      Data for
   0.0    0.0           BX0, BX1      Element 2
   0.0    0.0           CX0, CX1
   0.0    0.0    0.0    FX0,FX1,FX2
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(Box P7.16 is continued from the previous page)

Problem 7.17: Solve the problem of axisymmetric deformation of a rotating circular
disk using four linear elements (see Example 7.3.5).

Figure P7.17

Solution: The input data and edited output for the circular disk problem are
presented in Box P7.17.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

   1      5      1.6    NOD(3,J)
   0.0    0.0           AX0, AX1      Data for
   0.0    0.0           BX0, BX1      Element 3
   0.0    0.0           CX0, CX1
   0.0    0.0    0.0    FX0,FX1,FX2

    2                   NSPV
    3 1   0.0           ISPV(1,1),ISPV(1,2),VSPV(1)
    4 1   0.0           ISpV(2,1),ISpV(2,2),VSpV(2)
    0                   NSSV
    0                   NNBC
    2                   NMPC
    1 1   5 1  3.2 -1.0 0.0 0.0   IMC1(I,J), IMC2(I,J)
    2 1   5 1  1.33333 -1.0 0.0 970.0    VMPC(1,I)
 

 SOLUTION (values of PVs) at the NODES:

 0.10000E-03  0.24000E-03  0.00000E+00  0.00000E+00  0.32001E-03

 REACTION  FORCES:

 0.80001E+03  0.95999E+03

0R

ω
u,r

H

•
•

•
•

• A typical radial line

All radial lines experience the same deformation

1 2 3 4 5

u,r
Mesh of four linear elements

1 2 3 4
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Box P7.17: Input and partial output for Problem 7.17.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Example 7.3.5: Deformation of a circular disk (4 linear elements)
     1  1  0                      MODEL, NTYPE, ITEM
     1  4                         IELEM, NEM
     1  1                         ICONT, NPRNT
  0.0  0.25  0.25  0.25  0.25     DX(I)
       1.0  1.0                   AX0, AX1
       0.3  1.0                   BX0, BX1
       0.0  0.0                   CX0, CX1
       0.0  1.0     0.0           FX0, FX1, FX2
     1                            NSPV
     1  1   0.0                   ISPV(1,1), ISPV(1,2), VSPV(1)
     0                            NSSV
     0                            NNBC
     0                            NMPC

    OUTPUT from program   FEM1D   by J. N. REDDY

Example 7.3.5: Deformation of a circular disk (4 linear elements)

    *** ANALYSIS OF MODEL 1, AND TYPE 1 PROBLEM ***

    MODEL=1,NTYPE=0: A problem described by MODEL EQ. 1
    MODEL=1,NTYPE=1: A circular DISK (PLANE STRESS)
    MODEL=1,NTYPE>1: A circular DISK (PLANE STRAIN)

          Element type (0, Hermite,>0, Lagrange)..=   1
          No. of deg. of freedom per node, NDF....=   1
          No. of elements in the mesh, NEM........=   4
          No. of total DOF in the model, NEQ......=   5
          Half bandwidth of the matrix, NHBW......=   2
          No. of specified primary DOF, NSPV......=   1
          No. of specified secondary DOF, NSSV....=   0
          No. of specified Newton B. C.: NNBC.....=   0

    SOLUTION (values of PVs) at the NODES:

0.00000E+00  0.71696E-01  0.13141E+00  0.16935E+00  0.17500E+00

         X       Displacemnt  Radial Strs  Hoop Stress

    0.00000E+00  0.00000E+00  0.28678E+00
    0.31250E-01  0.89620E-02  0.40969E+00  0.40969E+00
    0.12500E+00  0.35848E-01  0.40969E+00  0.40969E+00
    0.25000E+00  0.71696E-01  0.40969E+00  0.40969E+00
    0.25000E+00  0.71696E-01  0.35703E+00  0.39389E+00
    0.37500E+00  0.10155E+00  0.35176E+00  0.37634E+00
    0.50000E+00  0.13141E+00  0.34913E+00  0.36756E+00
    0.50000E+00  0.13141E+00  0.25341E+00  0.33884E+00
    0.75000E+00  0.16935E+00  0.24121E+00  0.29816E+00
    0.75000E+00  0.16935E+00  0.99275E-01  0.25558E+00
    0.87500E+00  0.17218E+00  0.89705E-01  0.22368E+00
    0.10000E+01  0.17500E+00  0.82527E-01  0.19976E+00
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7.18—7.25 Solve Problems 5.7—5.14 using the minimum number of Euler—Bernoulli
beam elements (Note: Numerous other beam problems can be found in
books on mechanics of deformable solids).

Solutions: For each of the beam problems, the figure of the beam structure, input
data file and edited output are listed. Note that the bending moment and shear force
computed in the postcomputation will not be accurate. The frame element will give
the correct element forces and moments.

Problem 7.18:

Figure P7.18

Box P7.18a: Input and partial output for Problem 7.18.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 PROBLEM 5.7: BEAM PROBLEM
    3  0  0                           MODEL, NTYPE, ITEM
    0  2                              IELEM, NEM
    0  1                              ICONT, NPRNT
       3                              NNM
      1  2  96.0                      NOD(1,J),GLX(1)
      0.0    0.0                      AX0, AX1
      6.0E8  0.0                      BX0, BX1
      0.0    0.0                      CX0, CX1
     50.0    0.0  0.0                 FX0,FX1,FX2
      2  3  48.0                      NOD(1,J),GLX(2)
      0.0    0.0                      AX0, AX1
      6.0E8  0.0                      BX0, BX1
      0.0    0.0                      CX0, CX1
      0.0    0.0  0.0                 FX0,FX1,FX2
    2                                 NSPV
    1  1    0.0                       ISPV(1,1),ISPV(1,2),VSPV(1)
    2  1    0.0                       ISPV(2,1),ISPV(2,2),VSPV(2)
    1                                 NSSV
    3  1   1000.0                     ISSV(1,1),ISSV(1,2),VSSV(1)
    0                                 NNBC
    0                                 NMPC

 SOLUTION (values of PVs) at the NODES: 
 0.00000E+00 -0.17920E-02  0.00000E+00  0.51200E-03  0.36864E-01
-0.14080E-02

EI = 6 × 108 lb-in2.

96 in. 48 in.

1,000 lb
50 lb/in.

z
x

)(xM

)(xV

Positive sign convention
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Figure P7.18

Box P7.18b: Input and partial output for Problem 7.18 using the frame element.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

EI = 6 × 108 lb-in2.

96 in. 48 in

1,000 lb
50 lb/in.

x

o90=θ

Element 1

Element 2

lb0lb1000−

in-lb000,48

lb1900− lb2900−

lb4800

lb1000

in-lb0
in-lb000,48−

lb1900 lb3900
in-lb0

 PROBLEM 5.7: BEAM PROBLEM USING FRAME ELEMENT
    4  1  0                     MODEL, NTYPE, ITEM
    0  2                        IELEM, NEM
    0  1                        ICONT, NPRNT
       3                        NNM
  0.3 6.0E8 96.0   1.0  1.0  1.0  0.0 PR, SE, SL, SA, SI, CS, SN
  0.0 50.0   0.0   0.0  0.0  1.0      HF, VF, PF, XB, CST, SNT
    1  2                              NOD
  0.3 6.0E8 48.0   1.0  1.0  1.0  0.0
  0.0 0.0    1.E3 48.0  0.0  1.0
    2  3
    0                           NCON
    3                           NSPV
    1  1    0.0                 ISPV(1,1),ISPV(1,2),VSPV(1)
    1  2    0.0                 ISPV(1,1),ISPV(1,2),VSPV(1)
    2  2    0.0                 ISPV(2,1),ISPV(2,2),VSPV(2)
    0                           NSSV
    0                           NNBC
    0                           NMPC

    SOLUTION (values of PVs) at the NODES: 

    0.00000E+00  0.00000E+00 -0.17920E-02  0.00000E+00  0.00000E+00
    0.51200E-03  0.00000E+00  0.36864E-01 -0.14080E-02

         Generalized forces in the element coordinates
     (second line gives the results in the global coordinates)

   Ele  Force, H1   Force, V1  Moment, M1  Force, H2    Force, V2  Moment, M2
  
    1  0.0000E+00 -0.1900E+04  0.0000E+00  0.0000E+00 -0.2900E+04 -0.4800E+05
       0.0000E+00 -0.1900E+04  0.0000E+00  0.0000E+00 -0.2900E+04 -0.4800E+05
    2  0.0000E+00 -0.1000E+04  0.4800E+05  0.0000E+00  0.0000E+00  0.0000E+00
       0.0000E+00 -0.1000E+04  0.4800E+05  0.0000E+00  0.0000E+00  0.0000E+00
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Problem 7.19: Here we use h = 1.0, q0 = 1 and EI = 1, but understand that the
deflection is a multiple of q0h

4/EI and rotation is a multiple of q0h
3/EI.

Figure P7.19

Box P7.19: Input and partial output for Problem 7.19.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 h 

 q0

EI = constant

 h 

 PROBLEM 5.8: BEAM PROBLEM
    3  0  0                     MODEL, NTYPE, ITEM
    0  2                        IELEM, NEM
    0  1                        ICONT, NPRNT
       3                        NNM
      1  2   1.0                NOD(1,J),GLX(1)
      0.0    0.0                AX0, AX1
      1.0E0  0.0                BX0, BX1
      0.0    0.0                CX0, CX1
      1.0    0.0  0.0           FX0,FX1,FX2
      2  3   1.0                NOD(1,J),GLX(2)
      0.0    0.0                AX0, AX1
      1.0E0  0.0                BX0, BX1
      0.0    0.0                CX0, CX1
      0.0    0.0  0.0           FX0,FX1,FX2
    4                           NSPV
    1  1    0.0                 ISPV(1,1),ISPV(1,2),VSPV(1)
    1  2    0.0                 ISPV(2,1),ISPV(2,2),VSPV(2)
    3  1    0.0                 ISPV(3,1),ISPV(3,2),VSPV(3)
    3  2    0.0                 ISPV(4,1),ISPV(4,2),VSPV(4)
    0                           NSSV
    0                           NNBC
    0                           NMPC

 SOLUTION (values of PVs) at the NODES: 

    0.00000E+00  0.00000E+00  0.20833E-01        0.10417E-01  
    0.00000E+00  0.00000E+00
  
         X        Deflect.     Rotation     B. Moment   Shear Force
  
    0.10000E+01  0.20833E-01  0.10417E-01 -0.16667E+00 -0.31250E+00
    0.00000E+00  0.20833E-01  0.10417E-01 -0.83333E-01  0.18750E+00
     
  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
EI
hq 4

0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
EI
hq 3

0
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Problem 7.20: We can exploit the symmetry of the problem and use half-beam
model with dw/dx = 0 at the line of symmetry.

Figure P7.20

Box P7.20: Input and partial output for Problem 7.20.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

200 lb/in.

Steel members (Es = 30×106 psi)

12 in
4 in4 in

1.5 in. dia. 1.5 in dia.

2 in dia.

 PROBLEM 5.9: BEAM PROBLEM (Half-beam model)
    3  0  0                     MODEL, NTYPE, ITEM
    0  2                        IELEM, NEM
    0  1                        ICONT, NPRNT
       3                        NNM
      1  2      4.0             NOD(1,J),GLX(1)
      0.0       0.0             AX0, AX1
     7.455E6    0.0             BX0, BX1
      0.0       0.0             CX0, CX1
      0.0       0.0  0.0        FX0,FX1,FX2
      2  3      6.0             NOD(1,J),GLX(2)
      0.0       0.0             AX0, AX1
    23.562E6    0.0             BX0, BX1
      0.0       0.0             CX0, CX1
    200.0       0.0  0.0        FX0,FX1,FX2
    3                           NSPV
    1  1        0.0             ISPV(1,1),ISPV(1,2),VSPV(1)
    1  2        0.0             ISPV(2,1),ISPV(2,2),VSPV(2)
    3  2        0.0             ISPV(3,1),ISPV(3,2),VSPV(3)
    0                           NSSV
    0                           NNBC
    0                           NMPC

    SOLUTION (values of PVs) at the NODES: 

    0.00000E+00  0.00000E+00  0.25163E-02 -0.82891E-03  0.54614E-02
    0.00000E+00
  
   x is the global coord. if ICONT=1 and it is the local coord. if ICONT=0

         x        Deflect.     Rotation     B. Moment   Shear Force

    0.00000E+00  0.00000E+00  0.00000E+00  0.39449E+04 -0.12000E+04
    0.20000E+01  0.84370E-03 -0.73639E-03  0.15449E+04 -0.12000E+04
    0.40000E+01  0.25163E-02 -0.82891E-03 -0.85512E+03 -0.12000E+04
    0.00000E+00  0.25163E-02 -0.82891E-03 -0.14551E+04 -0.60000E+03
    0.30000E+01  0.46105E-02 -0.52905E-03 -0.32551E+04 -0.60000E+03
    0.60000E+01  0.54614E-02  0.00000E+00 -0.50551E+04 -0.60000E+03
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Problem 7.21:

Figure P7.21

Box P7.21: Input and partial output for Problem 7.21.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 PROBLEM 5.10: BEAM PROBLEM
    3  0  0                    MODEL, NTYPE, ITEM
    0  2                       IELEM, NEM
    0  2                       ICONT, NPRNT
       3                       NNM
    1  2      0.12             NOD(1,J),GLX(1)
    0.0       0.0              AX0, AX1
    7.952E3  0.0              BX0, BX1
    0.0       0.0              CX0, CX1
  200.0       0.0  0.0         FX0,FX1,FX2
    2  3      0.12             NOD(1,J),GLX(2)
    0.0       0.0              AX0, AX1
    1.571E3   0.0              BX0, BX1
    0.0       0.0              CX0, CX1
    0.0       0.0  0.0         FX0,FX1,FX2
    3                          NSPV
    1  1      0.0              ISPV(1,1),ISPV(1,2),VSPV(1)
    1  2      0.0              ISPV(2,1),ISPV(2,2),VSPV(2)
    3  1      0.0              ISPV(3,1),ISPV(3,2),VSPV(3)
    2                          NSSV
    2  1      1.0E3            ISPV(1,1),ISPV(1,2),VSPV(1)
    3  2     -5.0E3            ISPV(2,1),ISPV(2,2),VSPV(2)
    0                          NNBC
    0                          NMPC

 SOLUTION (values of PVs) at the NODES: 

 0.00000E+00  0.00000E+00 -0.30022E-02  0.37671E-01  0.00000E+00
-0.15184E+00

200 N/m

Steel members
(Es = 200 GPa)

12 cm

2 cm dia.3 cm. dia.

12 cm

5 kN-m

1 kN
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Problem 7.22:

Figure P7.22

Box P7.22: Input and partial output for Problem 7.22.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

mN104 6 −×=EI

N/m4000 =q

m5=hm5=h

 PROBLEM 5.11: BENDING OF A BEAM (Euler-Bernoulli)
    3   0  0               MODEL, NTYPE, ITEM
    0   2                  IELEM, NEM
    1   1                  ICONT, NPRNT
    0.0    5.0    5.0      DX(I)
    0.0    0.0             AX0, AX1
    4.0E6  0.0             BX0, BX1
    0.0    0.0             CX0, CX1
  400.0    0.0    0.0      FX0,FX1,FX2
    3                      NSPV
    1  1   0.0             ISPV(1,1),ISPV(1,2),VSPV(1)
    1  2   0.0             ISPV(2,1),ISPV(2,2),VSPV(2)
    2  1   0.0             ISPV(3,1),ISPV(3,2),VSPV(3)
    0                      NSSV
    0                      NNBC
    0                      NMPC

    SOLUTION (values of PVs) at the NODES: 

    0.00000E+00  0.00000E+00  0.00000E+00 -0.13021E-02  0.14323E-01
   -0.33854E-02
  
         x        Deflect.     Rotation     B. Moment   Shear Force
    
    0.00000E+00  0.00000E+00  0.00000E+00 -0.20833E+04  0.12500E+04
    0.25000E+01 -0.81380E-03  0.32552E-03  0.10417E+04  0.12500E+04
    0.50000E+01  0.00000E+00 -0.13021E-02  0.41667E+04  0.12500E+04
    0.50000E+01  0.00000E+00 -0.13021E-02  0.41667E+04 -0.10000E+04
    0.75000E+01  0.58594E-02 -0.31250E-02  0.16667E+04 -0.10000E+04
    0.10000E+02  0.14323E-01 -0.33854E-02 -0.83333E+03 -0.10000E+04
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Problem 7.23:

Figure P7.23

Box P7.23: Input and partial output for Problem 7.23.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 h 

 q0

EI = constant

•

 a
 F0

 x
 h 

 F1

m10N/m10kN2

kN5mN1050m4
3

01

0
26

.a,q,F

F,EI,h

===

=−×==

 PROBLEM 5.12: BENDING OF A BEAM (Euler-Bernoulli)
    3  0  0                    MODEL, NTYPE, ITEM
    0  2                       IELEM, NEM
    0  2                       ICONT, NPRNT
       3                       NNM
    1  2      4.0              NOD(1,J),GLX(1)
    0.0       0.0              AX0, AX1
    5.0E7     0.0              BX0, BX1
    0.0       0.0              CX0, CX1
    0.0       0.0  0.0         FX0,FX1,FX2
    2  3      4.0              NOD(1,J),GLX(2)
    0.0       0.0              AX0, AX1
    5.0E7     0.0              BX0, BX1
    0.0       0.0              CX0, CX1
    1.0E3     0.0  0.0         FX0,FX1,FX2
    2                          NSPV
    1  1      0.0              ISPV(1,1),ISPV(1,2),VSPV(1)
    2  1      0.0              ISPV(2,1),ISPV(2,2),VSPV(2)
    2                          NSSV
    1  2      0.5E3            ISPV(1,1),ISPV(1,2),VSPV(1)
    3  1     -2.0E3            ISPV(2,1),ISPV(2,2),VSPV(2)
    0                          NNBC
    0                          NMPC

    SOLUTION (values of PVs) at the NODES: 
    0.00000E+00  0.13333E-04  0.00000E+00 -0.66667E-05 -0.18667E-03
    0.10000E-03

         x        Deflect.     Rotation     B. Moment   Shear Force

    0.00000E+00  0.00000E+00  0.13333E-04  0.50000E+03 -0.12500E+03
    0.20000E+01 -0.10000E-04 -0.16667E-05  0.25000E+03 -0.12500E+03
    0.40000E+01  0.00000E+00 -0.66667E-05  0.37436E-06 -0.12500E+03
    0.00000E+00  0.00000E+00 -0.66667E-05 -0.13333E+04  0.50822E-12
    0.20000E+01 -0.40000E-04  0.46667E-04 -0.13333E+04  0.50822E-12
    0.40000E+01 -0.18667E-03  0.10000E-03 -0.13333E+04  0.50822E-12
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Problem 7.24:

Figure P7.24

Box P7.24: Input and partial output for Problem 7.24.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 PROBLEM 5.13: BENDING OF A BEAM (Euler-Bernoulli)
    3  0  0                  MODEL, NTYPE, ITEM
    0  3                     IELEM, NEM
    0  1                     ICONT, NPRNT
    4                        NNM
      1   2   5.0            NOD(1,J), GLX(1)
      0.0     0.0            AX0, AX1
      1.0E5   0.0            BX0, BX1
      0.0     0.0            CX0, CX1
      0.0   100.0  0.0       FX0, FX1, FX2
      2   3   5.0            NOD(1,J), GLX(2)
      0.0     0.0            AX0, AX1
      1.0E5   0.0            BX0, BX1
      0.0     0.0            CX0, CX1
      0.0     0.0  0.0       FX0, FX1, FX2
      3   4   5.0            NOD(1,J), GLX(3)
      0.0     0.0            AX0, AX1
      1.0E5   0.0            BX0, BX1
      0.0     0.0            CX0, CX1
      0.0     0.0  0.0       FX0, FX1, FX2
    2                        NSPV
    1  1    0.0              ISPV(1,1),VSPV(1,2),VSPV(1)
    4  1    0.0              ISPV(2,1),VSPV(2,2),VSPV(2)
    1                        NSSV
    3  1    1000.0           ISSV(1,1),VSSV(1,2),VSSV(1)
    0                        NNBC
    0                        NMPC

    SOLUTION (values of PVs) at the NODES: 
    0.00000E+00 -0.24826E+00  0.99537E+00 -0.11111E+00  0.98380E+00
    0.11806E+00  0.00000E+00  0.23611E+00

 5 m 

w0z,

 q0 = 500 N/m

EI = constant

 5 m

 x
 5 m

F0 =1,000 N

25 mN10 −=EI
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Problem 7.25:

Figure P7.25

Box P7.25: Input and partial output for Problem 7.25.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

dF0

hh

k
Linear elastic
 spring,

Rigid loading frame
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2EI EI
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 PROBLEM 5.14: BENDING OF A BEAM (Euler-Bernoulli)
    3  0  0                  MODEL, NTYPE, ITEM
    0  2                     IELEM, NEM
    0  1                     ICONT, NPRNT
    3                        NNM
      1   2   4.0            NOD(1,J), GLX(1)
      0.0     0.0            AX0, AX1
      1.0E8   0.0            BX0, BX1
      0.0     0.0            CX0, CX1
      1.0E3   0.0  0.0       FX0, FX1, FX2
      2   3   4.0            NOD(1,J), GLX(2)
      0.0     0.0            AX0, AX1
      5.0E7   0.0            BX0, BX1
      0.0     0.0            CX0, CX1
      0.0     0.0  0.0       FX0, FX1, FX2
    2                        NSPV
    1  1    0.0              ISPV(1,1),VSPV(1,2),VSPV(1)
    1  2    0.0              ISPV(2,1),VSPV(2,2),VSPV(2)
    2                        NSSV
    2  1    5.0E3            ISSV(1,1),VSSV(1,2),VSSV(1)
    2  2   -2.5E3            ISSV(1,1),VSSV(1,2),VSSV(1)
    1                        NNBC
    3  1    1.0E6  0.0       INBC(1,1),INBC(1,2),VNBC(1),UREF(1)
    0                        NMPC

SOLUTION (values of PVs) at the NODES:

 0.00000E+00  0.00000E+00  0.85364E-03 -0.27680E-03  0.13744E-02
-0.56895E-04
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Problem 7.26: Analyze Problem 7.22 (same as Problem 5.11) using the RIE
Timoshenko element. Assume ν = 0.25, Ks = 5/6 and H = 0.1 m (beam height).
Use 2,4 and 8 elements to see the convergence characteristics of the RIE element
(two-element model may yield results very far off from the Euler—Bernoulli beam
solution).

Solution: First, we calculate GAKs

GAKs = GBH
5

6
=

E

2(1 + 0.25)

BH3

12

12

H2

5

6
=
4EI

H2

Thus, GAKs = 1.6×108 N. A typical input file and deflection and rotations obtained
at x = L = 10m by the three meshes are tabulated in Box P7.26.

Box P7.26: Input and partial output for Problem 7.26.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

PROBLEM 5.11: BENDING OF A BEAM (RIE Timoshenko element)
   2   0  0               MODEL, NTYPE, ITEM
   1   8                  IELEM, NEM
   1   1                  ICONT, NPRNT
   0.0    1.25  1.25  1.25  1.25
          1.25  1.25  1.25  1.25  DX(I)
  16.0E8  0.0             AX0, AX1
   4.0E6  0.0             BX0, BX1
   0.0    0.0             CX0, CX1
 400.0    0.0  0.0        FX0,FX1,FX2
   3                      NSPV
   1  1   0.0             ISPV(1,1),ISPV(1,2),VSPV(1) 
   1  2   0.0             ISPV(2,1),ISPV(2,2),VSPV(2) 
   5  1   0.0             ISPV(3,1),ISPV(3,2),VSPV(3) 
   0                      NSSV
   0                      NNBC  
   0                      NMPC

SOLUTION:

Timoshenko (RIE) element

    2      0.78281E-02  -0.31275E-02
    4      0.13291E-01  -0.34389E-02
    8      0.14100E-01  -0.34052E-02

Euler-Bernoulli (EBE) element

    2      0.14323E-01  -0.33854E-02

)()(Elements
ofNo.

LLw φ
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Problem 7.27: Repeat Problem 7.26 using the CIE Timoshenko element.

Solution: The input data file and the results are summarized in Box P7.27.

Box P7.27: Input and summary of the results for Problem 7.27.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

Timoshenko (CIE) element

    L2      0.52219E-02  -0.20854E-02
    L4      0.12380E-01  -0.31263E-02
    L8      0.13859E-01  -0.33246E-02

Euler-Bernoulli (EBE) element

    2      0.14323E-01  -0.33854E-02

)()(Ele ofNo. LLw φ

 PROBLEM 5.11: BENDING OF A BEAM (CIE Timoshenko element)
    2   2  0               MODEL, NTYPE, ITEM
    1   4                  IELEM, NEM
    1   1                  ICONT, NPRNT
    0.0    2.5  2.5  2.5  2.5      DX(I)
   16.0E8  0.0             AX0, AX1
    4.0E6  0.0             BX0, BX1
    0.0    0.0             CX0, CX1
  400.0    0.0  0.0        FX0,FX1,FX2
    3                      NSPV
    1  1   0.0             ISPV(1,1),ISPV(1,2),VSPV(1)
    1  2   0.0             ISPV(2,1),ISPV(2,2),VSPV(2)
    3  1   0.0             ISPV(3,1),ISPV(3,2),VSPV(3)
    0                      NSSV
    0                      NNBC
    0                      NMPC

10
4

mN104

2

6

.H,
H
EI

GAK

EI

s ==

−×=

N/m4000 =q

m5=hm5=h
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Note: Numerous other circular plate problems can be assigned using a variation of
loads and boundary conditions as well as the type of element used.

Problem 7.28: Analyze a clamped circular plate under a uniformly distributed
transverse load using the Euler—Bernoulli plate element. Investigate the convergence
using 2, 4 and 8 elements by comparing with the exact solution (from Reddy, 2002)

w(r) =
q0a

4

64D

"
1−

µ
r

a

¶2#2

where D = EH3/12(1−ν2), q0 is the intensity of the distributed load, a is the radius
of the plate, H is its thickness, and ν is Poisson’s ratio (ν = 0.25). Tabulate the
center deflection.

Solution: The input data file and the results are summarized in Box P7.28. Note
that the slope at r = 0 need not be specified (to be zero); the results show that it is
indeed zero. The exact center deflection is w(0) = 0.17578 (times q0a

4/D).

Box P7.28: Input and partial output for Problem 7.28.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 PROBLEM 7.28: BENDING OF A CLAMPED CIRCULAR PLATE (EBE)
    3   1  0               MODEL, NTYPE, ITEM
    0   4                  IELEM, NEM
    1   1                  ICONT, NPRNT
    0.0    0.25  0.25  0.25  0.25        DX(I)
    1.0    1.0             AX0(E1), AX1(E2)  (E1=E2=E)
    0.25   1.0             BX0(ν), BX1(H)  (H=thickness)
    0.0    0.0             CX0, CX1
    1.0    0.0  0.0        FX0,FX1,FX2
    2                      NSPV
    5  1   0.0             ISPV(1,1),ISPV(1,2),VSPV(1)
    5  2   0.0             ISPV(2,1),ISPV(2,2),VSPV(2)
    0                      NSSV
    0                      NNBC
    0                      NMPC

    SOLUTION (values of PVs) at the NODES:
   N = 2
    0.17613E+00 -0.61141E-02  0.99182E-01  0.26295E+00  0.00000E+00
    0.00000E+00
   N = 4
    0.17581E+00 -0.76427E-03  0.15453E+00  0.16468E+00  0.98897E-01
    0.26362E+00  0.33656E-01  0.23069E+00  0.00000E+00  0.00000E+00
   N = 8
    0.17578E+00 -0.95533E-04  0.17033E+00  0.86502E-01  0.15450E+00
    0.16479E+00  0.12982E+00  0.22659E+00  0.98878E-01  0.26367E+00
    0.65275E-01  0.26779E+00  0.33646E-01  0.23071E+00  0.96563E-02
    0.14419E+00  0.00000E+00  0.00000E+00
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Problem 7.29: Repeat Problem 7.28 with the RIE Timoshenko plate elements for
a/H = 10. Use 4 and 8 linear elements and 2 and 4 quadratic elements and tabulate
the center deflection. Take E = 107, ν = 0.25 and Ks = 5/6. The exact solution is
(see page 403 of Reddy, 2002)

w(r) =
q0a
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Solution: We have G = 0.4×107. The input data file and the results are summarized
in Box P7.29. The exact center deflection is w(0) = 0.18328× 10−4 (the contribution
due to shear is 0.0075× 10−4).

Box P7.29: Typical input file and summary of results for Problem 7.29.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

PROBLEM 7.29: BENDING OF A CLAMPED CIRCULAR POLATE (RIE)
   2   1  0               MODEL, NTYPE, ITEM
   2   2                  IELEM, NEM
   1   1                  ICONT, NPRNT
   0.0    0.5  0.5        DX(I)
   1.0E7  1.0E7           AX0(E1), AX1(E2) (E1 = E2 = E) 
   0.25   0.1             BX0 (nu), BX1(H)  (H = thickness)
   0.0    0.0             CX0, CX1
   1.0    0.0  0.333333E7 FX0,FX1,FX2(G)   (G = shear modulus) 
   2                      NSPV
   5  1   0.0             ISPV(1,1),ISPV(1,2),VSPV(1) 
   5  2   0.0             ISPV(2,1),ISPV(2,2),VSPV(2) 
   0                      NSSV
   0                      NNBC  
   0                      NMPC

 SOLUTION at the NODES (Only first row is listed): 

 N = 4L
 0.18549E-04  0.83705E-06  0.16092E-04  0.18316E-04  0.10136E-04

    N = 4Q
    0.18339E-04 -0.17233E-06  0.17782E-04  0.87171E-05  0.16161E-04

    N = 8L
    0.18382E-04  0.10463E-06  0.17798E-04  0.89928E-05  0.16141E-04

    N = 2Q 
    0.18462E-04 -0.13787E-05  0.16268E-04  0.17021E-04  0.10529E-04

N = 8Q 
0.18329E-04 -0.21542E-07  0.18189E-04  0.43855E-05  0.17772E-04
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7.30 Repeat Problem 7.29 with the Timoshenko plate element (CIE) (and linear
elements) for a/H = 10.

Solution: The input data files and the results for the generalized displacements are
presented in Box P7.30.

Box P7.30: Input files and solutions for Problem 7.30.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 PROBLEM 7.30: BENDING OF A CLAMPED CIRCULAR POLATE (CIE)
    2   3  0               MODEL, NTYPE, ITEM
    1   4                  IELEM, NEM
    1   1                  ICONT, NPRNT
    0.0    0.25  0.25  0.25  0.25        DX(I)
    1.0E7  1.0E7           AX0(E1), AX1(E2) (E1 = E2 = E)
    0.25   0.1             BX0 (nu), BX1(H)  (H = thickness)
    0.0    0.0             CX0, CX1
    1.0    0.0  0.333333E7 FX0,FX1,FX2(G)   (G = shear modulus)
    2                      NSPV
    5  1   0.0             ISPV(1,1),ISPV(1,2),VSPV(1)
    5  2   0.0             ISPV(2,1),ISPV(2,2),VSPV(2)
    0                      NSSV
    0                      NNBC
    0                      NMPC

 PROBLEM 7.30: BENDING OF A CLAMPED CIRCULAR POLATE (CIE)
    2   3  0               MODEL, NTYPE, ITEM
    1   8                  IELEM, NEM
    1   1                  ICONT, NPRNT
    0.0    0.125  0.125  0.125  0.125
           0.125  0.125  0.125  0.125        DX(I)
    1.0E7  1.0E7           AX0(E1), AX1(E2) (E1 = E2 = E)
    0.25   0.1             BX0 (nu), BX1(H)  (H = thickness)
    0.0    0.0             CX0, CX1
    1.0    0.0  0.333333E7 FX0,FX1,FX2(G)   (G = shear modulus)
    2                      NSPV
    9  1   0.0             ISPV(1,1),ISPV(1,2),VSPV(1)
    9  2   0.0             ISPV(2,1),ISPV(2,2),VSPV(2)
    0                      NSSV
    0                      NNBC
    0                      NMPC

    SOLUTION (values of PVs) at the NODES: 
    0.17820E-04  0.41853E-06  0.15546E-04  0.17274E-04  0.98484E-05
    0.27143E-04  0.32742E-05  0.23551E-04  0.00000E+00  0.00000E+00

    SOLUTION (values of PVs) at the NODES: 
    0.18200E-04  0.52316E-07  0.17631E-04  0.87989E-05  0.16002E-04
    0.16672E-04  0.13472E-04  0.22863E-04  0.10301E-04  0.26558E-04
    0.68510E-05  0.26941E-04  0.35886E-05  0.23190E-04  0.10813E-05
    0.14484E-04  0.00000E+00  0.00000E+00
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Problem 7.31: Consider an annular plate of outer radius a and an inner radius b,
and thickness H. If the plate is simply supported at the outer edge and subjected
to a uniformly distributed load q0 (see Fig. P7.31), analyze the problem using the
Euler—Bernoulli plate element. Compare the four-element solution with the analytical
solution (from Reddy, 2002)

w =
q0a
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a
, D =

EH3

12(1− ν2)

where E is the modulus of elasticity, H the thickness and ν Poisson’s ratio. Take
E = 107, ν = 0.3 and b/a = 0.25.

Figure P7.31

Solution: The input data files and the results for the generalized displacements are
presented in Box P7.31. The exact displacement is w(b) = 0.83(q0a

4/EH3).

Box P7.31: Input files and solutions for Problem 7.31.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 PROBLEM 7.31: BENDING OF A SIMPLY SUPPORTED ANNULAR PLATE (EBE)
    3   1  0               MODEL, NTYPE, ITEM
    0   4                  IELEM, NEM
    1   1                  ICONT, NPRNT
    0.25   0.1875  0.1875  0.1875  0.1875        DX(I)
    1.0E7  1.0E7           AX0(E1), AX1(E2)  (E1=E2=E)
    0.3    0.1             BX0(nu), BX1(H)
    0.0    0.0             CX0, CX1
    1.0    0.0  0.0        FX0,FX1,FX2
    1                      NSPV
    5  1   0.0             ISPV(1,1),ISPV(1,2),VSPV(1)
    0                      NSSV
    0                      NNBC
    0                      NMPC

    SOLUTION (values of PVs) at the NODES: 

    0.82921E-04  0.10390E-03  0.64116E-04  0.10140E-03  0.44172E-04
    0.11162E-03  0.22433E-04  0.11923E-03  0.00000E+00  0.11826E-03

H
r

 a  a 

b

z, w(r)

b 0q0q



 PROBLEM 7.32: BENDING OF A SIMPLY SUPPORTED ANNULAR PLATE (TBT)
    2   1  0               MODEL, NTYPE, ITEM
    2   2                  IELEM, NEM
    1   1                  ICONT, NPRNT
    0.25   0.375  0.375    DX(I)
    1.0E7  1.0E7           AX0(E1), AX1(E2)  (E1=E2=E)
    0.3    0.1             BX0(ν), BX1(H)
    0.0    0.0             CX0, CX1
    1.0    0.0  0.3205E7   FX0,FX1,FX2
    1                      NSPV
    5  1   0.0             ISPV(1,1),ISPV(1,2),VSPV(1)
    0                      NSSV
    0                      NNBC
    0                      NMPC

    SOLUTION (values of PVs) at the NODES: 

    0.83278E-04  0.10253E-03  0.64321E-04  0.10110E-03  0.44482E-04
    0.11114E-03  0.22589E-04  0.11895E-03  0.00000E+00  0.11792E-03

 PROBLEM 7.32: BENDING OF A SIMPLY SUPPORTED ANNULAR PLATE (TBT)
    2   1  0               MODEL, NTYPE, ITEM
    1   4                  IELEM, NEM
    1   1                  ICONT, NPRNT
    0.25   0.1875 0.1875 0.1875 0.1875    DX(I)
    1.0E7  1.0E7           AX0(E1), AX1(E2)  (E1=E2=E)
    0.3    0.1             BX0(nu), BX1(H)
    0.0    0.0             CX0, CX1
    1.0    0.0  0.3205E7   FX0,FX1,FX2
    1                      NSPV
    5  1   0.0             ISPV(1,1),ISPV(1,2),VSPV(1)
    0                      NSSV
    0                      NNBC
    0                      NMPC

    SOLUTION (values of PVs) at the NODES: 

    0.83203E-04  0.10260E-03  0.64048E-04  0.10118E-03  0.44010E-04
    0.11126E-03  0.22294E-04  0.11840E-03  0.00000E+00  0.11678E-03
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Problem 7.32: Repeat Problem 7.31 with (a) four linear elements and (b) two
quadratic Timoshenko (RIE) elements for a/H = 10.

Solution: The input data files and the results for the generalized displacements are
presented in Box P7.32.

Box P7.32: Input files and solutions for Problem 7.32.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.



216 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

Problems 7.33—7.47: Analyze the truss problems in Figures P4.38—P4.44 and frame
problems in Figures P5.28—P5.35.

Solution to Problem 7.33: We have (sin θ1 = cos θ1 = 1/
√
2) for element 1 and

(sin θ2 = 0.8944, cos θ2 = −0.4472) for element 2. The input data file and the edited
output are presented in Box P7.33.

Figure P7.33

Box P7.33: Input files and solutions for Problem 7.33.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

10 kips
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    Problem 4.38: ANALYSIS OF A PLANE TRUSS
    4  0  0                                   MODEL, NTYPE, ITEM
    0  2                                      IELEM, NEM
    0  1                                      ICONT, NPRNT
       3                                      NNM
    30.E6 169.70563  3.0  0.7071  0.7071 0.0  SE, SL, SA, CS, SN, HF
       1    2                                 NOD(1,I) - Element 1
    30.E6 134.16408  4.0 -0.4472  0.8944 0.0  Element 2
       3    2
       4                                      NSPV
       1    1    0.0
       1    2    0.0                          ISPV, VSPV
       3    1    0.0
       3    2    0.0
       1                                      NSSV
       2    1   10.0E3                        ISSV, VSSV
       0                                      NNBC
       0                                      NMPC

    SOLUTION (values of PVs) at the NODES: 
    0.00000E+00  0.00000E+00  0.22973E-01  0.21690E-02  0.00000E+00
    0.00000E+00

         Generalized forces in the element coordinates
     (second line gives the results in the global coordinates)
  
   Ele  Force, H1   Force, V1   Force, H2  Force, V2
  
    1 -0.9428E+04  0.0000E+00  0.9428E+04  0.0000E+00
      -0.6667E+04 -0.6667E+04  0.6667E+04  0.6667E+04
    2  0.7453E+04  0.0000E+00 -0.7453E+04  0.0000E+00
      -0.3333E+04  0.6667E+04  0.3333E+04 -0.6667E+04
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Solution to Problem 7.34: The input data file and the edited output are presented
in Box P7.34.

Figure P7.34

Box P7.34: Input files and solutions for Problem 7.34.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

Problem 4.39: ANALYSIS OF A PLANE TRUSS
   4  0  0                                   MODEL, NTYPE, ITEM
   0  3                                      IELEM, NEM
   0  2                                      ICONT, NPRNT
      3                                      NNM
   30.E6 230.5125 15.0  0.6247  0.78087  0.0 SE,SL,SA,CS,SN,HF
      1    2                                 NOD(1,I)
   30.E6 360.0    20.0  1.0     0.0      0.0
      1    3
   30.E6 281.169  15.0 -0.7682  0.6402   0.0
      3    2
      3                                      NSPV
      1    1    0.0                     
      1    2    0.0                          ISPV, VSPV
      3    2    0.0                     
      1                                      NSSV
      2    2   -20.0E3                       ISSV, VSSV
      0                                      NNBC
      0                                      NMPC
SOLUTION (values of PVs) at the NODES: 
0.00000E+00  0.00000E+00  0.45136E-02 -0.13692E-01  0.57599E-02
0.00000E+00

         Generalized forces in the element coordinates
     (second line gives the results in the global coordinates)
  
   Ele  Force, H1   Force, V1   Force, H2  Force, V2

    1  0.1537E+05 -0.1819E-11 -0.1537E+05  0.1819E-11
       0.9600E+04  0.1200E+05 -0.9600E+04 -0.1200E+05
    2 -0.9600E+04  0.0000E+00  0.9600E+04  0.0000E+00
      -0.9600E+04  0.0000E+00  0.9600E+04  0.0000E+00
    3  0.1250E+05  0.0000E+00 -0.1250E+05  0.0000E+00
      -0.9600E+04  0.8000E+04  0.9600E+04 -0.8000E+04

ooo 8112903451 321 .,,. === θθθ
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Solution to Problem 7.35: The input data file and the edited output are presented
in Box P7.35.

Figure P7.35

Box P7.35: Input files and solutions for Problem 7.35.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

A =3 in2

10 ft.10 ft.

All members:
E =30 × 106 psi 10 ft.

8 kips

1

4

3

2

5

8 kips

1
2

4

3

Problem 4.40: ANALYSIS OF A PLANE TRUSS
   4  0  0                                   MODEL, NTYPE, ITEM
   1  5                                      IELEM, NEM
   0  1                                      ICONT, NPRNT
      4                                      NNM
   30.E6 169.70563 3.0  0.7071  0.7071 0.0   SE,SL,SA,CS,SN,HF
      1    3                                 NOD(1,I)
   30.E6 120.00    3.0  1.0     0.0    0.0
      1    2
   30.E6 120.00    3.0  0.0     1.0    0.0
      2    3
   30.E6 120.00    3.0  1.0     0.0    0.0
      2    4
   30.E6 169.70563 3.0  0.7071 -0.7071 0.0
      3    4                                 NOD(1,I)
      3                                      NSPV
      1    1    0.0
      1    2    0.0                          ISPV, VSPV
      4    2    0.0
      2                                      NSSV
      3    1    8.0E3                        ISSV, VSSV
      3    2   -8.0E3                        ISSV, VSSV
      0                                      NNBC
      0                                      NMPC

SOLUTION (values of PVs) at the NODES: 
0.00000E+00  0.00000E+00  0.10667E-01 -0.25752E-01  0.25752E-01
-0.25752E-01  0.21333E-01  0.00000E+00

   Ele  Force, H1   Force, V1   Force, H2  Force, V2
  
    2 -0.8000E+04  0.0000E+00  0.8000E+04  0.0000E+00
      -0.8000E+04  0.0000E+00  0.8000E+04  0.0000E+00
    4 -0.8000E+04  0.0000E+00  0.8000E+04  0.0000E+00
      -0.8000E+04  0.0000E+00  0.8000E+04  0.0000E+00
    5  0.1131E+05  0.0000E+00 -0.1131E+05  0.0000E+00
       0.8000E+04 -0.8000E+04 -0.8000E+04  0.8000E+04
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Solution to Problem 7.36: The input data file and the edited output are presented
in Box P7.36.

Figure P7.36

Box P7.36: Input files and solutions for Problem 7.36.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Problem 4.41: ANALYSIS OF A PLANE TRUSS
    4  0  0                                   MODEL, NTYPE, ITEM
    1  3                                      IELEM, NEM
    0  1                                      ICONT, NPRNT
       3                                      NNM
    10.E6 1.0     1.0  1.0    0.0    0.0      SE,SL,SA,CS,SN,HF
       1    2                                 NOD(1,I)
    10.E6 1.0     1.0  0.0    1.0    0.0
       2    3
    10.E6 1.414   1.0  0.707  0.707  0.0
       1    3
       4                                      NSPV
       1    1    0.0
       1    2    0.0                          ISPV, VSPV
       2    1    0.0
       2    2    0.0
       2                                      NSSV
       3    1    1.0E3                        ISSV, VSSV
       3    2   -2.0E3                        ISSV, VSSV
       0                                      NNBC
       0                                      NMPC

SOLUTION (values of PVs) at the NODES: 

 0.00000E+00  0.00000E+00  0.00000E+00  0.00000E+00  0.58289E-03
-0.30000E-03

    Ele  Force, H1   Force, V1   Force, H2  Force, V2
    
    1  0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00
       0.0000E+00  0.0000E+00  0.0000E+00  0.0000E+00
    2  0.3000E+04  0.0000E+00 -0.3000E+04  0.0000E+00
       0.0000E+00  0.3000E+04  0.0000E+00 -0.3000E+04
    3 -0.1414E+04  0.0000E+00  0.1414E+04  0.0000E+00
      -0.1000E+04 -0.1000E+04  0.1000E+04  0.1000E+04

L

All members:
EA = constant
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1 2

3 P
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Solution to Problem 7.37: The input data file and the edited output are presented
in Box P7.37.

Figure P7.37

Box P7.37: Input files and solutions for Problem 7.37.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

10 ft.

10 ft.10 ft.

16 kips

A2 = 1.0 in2

A3 = 1.5 in2
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E =29 × 106 lb/in2

1
2

3
x

y

1

2 3 4

1

2
2

1 1

2
1θ

2θ 3θ

xy

 Problem 4.42: ANALYSIS OF A PLANE TRUSS
    4  0  0                                   MODEL, NTYPE, ITEM
    1  3                                      IELEM, NEM
    0  1                                      ICONT, NPRNT
       4                                      NNM
    10.E6 1.414   0.5  -0.707  0.707  0.0     SE,SL,SA,CS,SN,HF
       1    2                                 NOD(1,I)
    10.E6 1.0     1.0   0.0    1.0    0.0
       1    3
    10.E6 1.414   1.5   0.707  0.707  0.0
       1    4
       6                                      NSPV
       2    1    0.0
       2    2    0.0                          ISPV, VSPV
       3    1    0.0
       3    2    0.0
       4    1    0.0
       4    2    0.0
       1                                      NSSV
       1    1    1.6E4                        ISSV, VSSV
       0                                      NNBC
       0                                      NMPC

SOLUTION (values of PVs) at the NODES: 

0.25245E-02 -0.52279E-03  0.00000E+00  0.00000E+00  0.00000E+00
0.00000E+00  0.00000E+00  0.00000E+00

   Ele  Force, H1   Force, V1   Force, H2  Force, V2
  
    1 -0.7616E+04  0.0000E+00  0.7616E+04  0.0000E+00
       0.5386E+04 -0.5386E+04 -0.5386E+04  0.5386E+04
    2 -0.5228E+04  0.0000E+00  0.5228E+04  0.0000E+00
       0.0000E+00 -0.5228E+04  0.0000E+00  0.5228E+04
    3  0.1501E+05  0.0000E+00 -0.1501E+05  0.0000E+00
       0.1061E+05  0.1061E+05 -0.1061E+05 -0.1061E+05
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Solution to Problem 7.38: The input data file and the edited output are presented
in Box P7.38.

Figure P7.38

Box P7.38: Input files and solutions for Problem 7.38.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Problem 4.43: ANALYSIS OF A PLANE TRUSS WITH INCLINED SUPPORT
    4  0  0                                MODEL, NTYPE, ITEM
    1  3                                   IELEM, NEM
    0  2                                   ICONT, NPRNT
       3                                   NNM
 207.0E9 1.0    0.5E-03  1.0    0.0    0.0 SE, SL, SA, CS, SN, HF
    1    2                                 NOD(1,I)
 207.0E9 1.0    0.5E-03  0.0    1.0    0.0 SE, SL, SA, CS, SN, HF
    2    3                                 NOD(2,I)
 207.0E9 1.4142 0.5E-03  0.7071 0.7071 0.0 SE, SL, SA, CS, SN, HF
    1    3                                 NOD(3,I)
       1                                   NCON
       2    60.0                           ICON(1), VCON(1)
       5                                   NSPV
       1    1    0.0                       ISPV(1,1),ISPV(1,2),VSPV(1)
       1    2    0.0                       ISPV(2,1),ISPV(2,2),VSPV(2)
       2    2    0.0                       ISPV(3,1),ISPV(3,2),VSPV(3)
       3    1    0.0                       ISPV(4,1),ISPV(4,2),VSPV(4)
       3    2    0.0                       ISPV(5,1),ISPV(5,2),VSPV(5)
       1                                   NSSV
       2    1    0.866E6                   ISSV(1,1),ISSV(1,2),VSSV(1)
       0                                   NNBC
       0                                   NMPC

P=1,000 kN

y

x

unL

us

For all members:
E = 207 GPa,
A = 5 cm2

1

3

2 600

L
3

2

1

Note that subroutine CONSTRNT transforms the
global degrees of freedom at global node 2 to the 
local degrees of freedom. Hence, the 2nd local 
degrees of freedom (un = 0) is known to be zero. 

 SOLUTION (values of PVs) at the NODES: 
    0.00000E+00  0.00000E+00  0.83671E-02  0.00000E+00  0.00000E+00
    0.00000E+00
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Solution to Problem 7.39: The input data file and the edited output are presented
in Box P7.39.

Figure P7.39

Box P7.39: Input files and solutions for Problem 7.39.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

P = 1,000 kN

y

xB

C

L = 1 m

L

For all members:
E = 207 GPa,
A = 5×10-4 m2

450

1
2

3

1

2
3

A

 Problem 4.44: ANALYSIS OF A PLANE TRUSS WITH INCLINED SUPPORT
    4  0  0                              MODEL, NTYPE, ITEM
    1  3                                 IELEM, NEM
    0  2                                 ICONT, NPRNT
       3                                 NNM
 207.0E9 1.0    0.5E-3 1.0    0.0    0.0 SE, SL, SA, CS, SN, HF
    1  2                                 NOD(1,I)
 207.0E9 1.0    0.5E-3 0.0    1.0    0.0 SE, SL, SA, CS, SN, HF
    2  3                                 NOD(2,I)
 207.0E9 1.4142 0.5E-3 0.7071 0.7071 0.0 SE, SL, SA, CS, SN, HF
    1  3                                 NOD(1,I)
    1                                    NCON
    3    45.0                            ICON(1), VCON(1)
    4                                    NSPV
    1    1    0.0                   ISPV(1,1),ISPV(1,2),VSPV(1)
    1    2    0.0                   ISPV(2,1),ISPV(2,2),VSPV(2)
    2    1    0.0                   ISPV(3,1),ISPV(3,2),VSPV(3)
    3    2    0.0                   ISPV(4,1),ISPV(4,2),VSPV(4)
    1                                    NSSV
    2    2    1.0E6                 ISSV(1,1),ISSV(1,2),VSSV(1)
    0                                    NNBC
    0                                    NMPC

    SOLUTION (values of PVs) at the NODES: 

    0.00000E+00  0.00000E+00  0.00000E+00  0.16494E-01  0.96619E-02
    0.00000E+00
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Solution to Problem 7.40: The input data file and the edited output are presented
in Box P7.40.

Figure P7.40

Box P7.40: Input files and solutions for Problem 7.40.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

B
C

A

c

b

P

1

2

psi1030in10in10  lb,10810 642223 ×====== E,I,AP,ftc,ftb

2 3

1

2
2 3

1

2 1 2

1

x

z

z
o901 =θ

o02 =θ

1

2
x

A

B C

C
yθ−

B
xu

z
y out of the paper

x

B
yθ− C

xu
B
zu

C
zu

 Problem 5.28:  ANALYSIS OF A PLANE FRAME of Prob 5.6  (E-B element)
    4  1  0                                   MODEL, NTYPE, ITEM
    0  2                                      IELEM, NEM
    0  2                                      ICONT, NPRNT
    3                                         NNM
    0.3   3.0E7  120.0   1.0E2  1.0E2 0.0 -1.0  PR,SE,SL,SA,SI,CS,SN
    0.0   0.0            0.0    0.0   0.0  0.0  HF,VF,PF,XB,CST,SNT
    1     2                                   NOD(1,J)
    0.3   3.0E7   96.0   1.0E2  1.0E2 1.0  0.0
    0.0   0.0            0.0    0.0   0.0  0.0  Element 2
    2     3
    0                                         NCON
    3                                         NSPV
    1     1    0.0                            ISPV(1,J), VSPV(1)
    1     2    0.0                            ISPV(2,J), VSPV(2)
    1     3    0.0                            ISPV(3,J), VSPV(3)
    1                                         NSSV
    3     2    1.0E3                          ISSV(1,J), VSSV(1)
    0                                         NNBC
    0                                         NMPC
    SOLUTION (values of PVs) at the NODES: 

    0.00000E+00  0.00000E+00  0.00000E+00  0.23040E+00  0.40000E-04
   -0.38400E-02  0.23040E+00  0.46698E+00 -0.53760E-02
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Solution to Problem 7.41: The input data file and the edited output are presented
in Box P7.41.

Figure P7.41

Box P7.41: Input files and solutions for Problem 7.41.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

E = 30×106  lb/in2, ν = 0.3
A = 102 in2,  I = 102 in4

8 kips

10 kips

1

A

B C
2

10 ft

5 ft5 ft

10 ft

3 ft

7 ft
2EI

EI
10 kips

kips22941
1 .Q =

kips63821
2 .Q =−

in-kip96941
3 .Q =

kips22941
4 .Q =−

kips36271
5 .Q =−

in-kip91101
6 .Q =−

    Problem 5.29:  ANALYSIS OF A PLANE FRAME  (E-B element)
    4  1  0                                   MODEL, NTYPE, ITEM
    0  2                                      IELEM, NEM
    0  2                                      ICONT, NPRNT
    3                                         NNM
    0.3   3.0E7  120.0   1.0E2  2.0E2 0.0 -1.0  PR,SE,SL,SA,SI,CS,SN
    0.0   0.0            1.0E4  84.0  0.0  1.0  HF, VF, PF, XB, CST, SNT
    1     2                                   NOD(1,J)
    0.3   3.0E7  120.0   1.0E2  1.0E2 1.0  0.0
    0.0   0.0            8.E3   60.0  0.0  1.0  Element 2
    0                                         NCON
    2     3
    6                                         NSPV
    1     1    0.0
    1     2    0.0                            ISPV(I,J), VSPV(I)
    1     3    0.0
    3     1    0.0
    3     2    0.0
    3     3    0.0
    0                                         NSSV
    0                                         NNBC
    0                                         NMPC

 SOLUTION (values of PVs) at the NODES: 

 0.00000E+00  0.00000E+00  0.00000E+00  0.29448E-03  0.16917E-03
 0.18625E-03  0.00000E+00  0.00000E+00  0.00000E+00
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Solution to Problem 7.42: The input data file and the edited output are presented
in Box P7.42.

Figure P7.42

Box P7.42: Input files and solutions for Problem 7.42.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

    Problem 5.30:  ANALYSIS OF A PLANE FRAME  (E-B element)
    4  1  0                                   MODEL, NTYPE, ITEM
    0  2                                      IELEM, NEM
    0  1                                      ICONT, NPRNT
    3                                         NNM
    0.3   3.0E7  509.117   1.0E2  1.0E3 0.7071 -0.7071 PR,SE,SL,SA,SI,CS,SN
    0.0   0.0              0.0    0.0   0.0     0.0  HF, VF, PF, XB, CST, SNT
    1     2                                   NOD(1,J)
    0.3   3.0E7  480.0     1.0E2  1.0E3 1.0  0.0
    0.0   83.33333         0.0    0.0   0.0  0.0  Element 2
    2     3                                   NOD(2,J)
    0                                         NCON
    6                                         NSPV
    1     1    0.0                            ISPV(1,J), VSPV(1)
    1     2    0.0                            ISPV(2,J), VSPV(2)
    1     3    0.0                            ISPV(3,J), VSPV(3)
    3     1    0.0                            ISPV(4,J), VSPV(4)
    3     2    0.0                            ISPV(5,J), VSPV(5)
    3     3    0.0                            ISPV(6,J), VSPV(6)
    0                                         NSSV
    0                                         NNBC
    0                                         NMPC

SOLUTION (values of PVs) at the NODES: 
 0.00000E+00  0.00000E+00  0.00000E+00  0.32950E-02  0.97423E-02
-0.32917E-02  0.00000E+00  0.00000E+00  0.00000E+00

30 ft

40 ft.

1,000 lb/ft.

450
E = 30×106  lb/in2, 
A = 102 in2.,  I = 103 in4.

2

1

A

B C

kips86261
1 .Q =

kips2621
2 .Q =

kips2621
5 .Q =−

kips57691
6 .Q =−

in-kip53811
3 .Q =−

kips86261
4 .Q =−
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Solution to Problem 7.43: The input data file and the edited output are presented
in Box P7.43.

Figure P7.43

Box P7.43: Input files and solutions for Problem 7.43.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

    Problem 5.31:  ANALYSIS OF A PLANE FRAME  (E-B element)
    4  1  0                                   MODEL, NTYPE, ITEM
    0  2                                      IELEM, NEM
    0  1                                      ICONT, NPRNT
    3                                         NNM
    0.3   3.0E7  120.0   1.0E2  2.0E2 0.0 -1.0  PR,SE,SL,SA,SI,CS,SN
    0.0   0.0            1.0E4  84.0  0.0  1.0  HF,VF,PF,XB,CST,SNT
    1     2                                   NOD(1,J)
    0.3   3.0E7  120.0   1.0E2  1.0E2 1.0  0.0
    0.0   0.0            8.E3   60.0  0.0  1.0  Element 2
    2     3
    0                                         NCON
    5                                         NSPV
    1     1    0.0
    1     2    0.0                            ISPV(I,J), VSPV(I)
    3     1    0.0
    3     2    0.0
    3     3    0.0
    0                                         NSSV
    0                                         NNBC
    0                                         NMPC

    SOLUTION (values of PVs) at the NODES: 

    0.00000E+00  0.00000E+00 -0.57017E-03  0.33246E-03  0.17865E-03
    0.37603E-03  0.00000E+00  0.00000E+00  0.00000E+00

E = 30×106  lb/in2, ν = 0.3
A = 102 in2,  I = 102 in4

8 kips

10 kips

1

A

B C
2

10 ft

EI, EA are the same 
for the two members

5 ft5 ft

10 ft

3 ft

7 ft
2EI

EI

°
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Solution to Problem 7.44: The input data file and the edited output are presented
in Box P7.44.

Figure P7.44

Box P7.44: Input files and solutions for Problem 7.44.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

E = 30×106  lb/in2,
A = 100 in2.,  I = 200 in4

20 ft

16 ft

10 kips

50
0 

lb
/f

t

1

A

B C

D

2

3

8 ft

3I

5I

2I

    Problem 5.32:  ANALYSIS OF A PLANE FRAME  (E-B element)
    4  1  0                                   MODEL, NTYPE, ITEM
    0  3                                      IELEM, NEM
    0  1                                      ICONT, NPRNT
    4                                         NNM
    0.3   30.0E6  192.0    100.0E0   600.0E0  0.0  -1.0 PR,SE,SL,SA,SI,CS,SN
    0.0   41.6667   0.0    0.0         0.0    1.0  HF, VF, PF, XB, CST, SNT
    1     2                                   NOD(1,J)
    0.3   30.0E6  240.0    100.0E0   1000.0E0  1.0  0.0
    0.0   0.0              1.0E4       96.0    0.0  1.0  Element 2
    2     3
    0.3   30.0E6  192.0    100.0E0   400.0E0  0.0  1.0
    0.0   0.0                0.0       0.0    0.0  0.0  Element 3
    3     4
    0                                         NCON
    3                                         NSPV
    4     1    0.0                            ISPV(I,J), VSPV(I)
    4     2    0.0                            ISPV(I,J), VSPV(I)
    4     3    0.0                            ISPV(I,J), VSPV(I)
    0                                         NSSV
    0                                         NNBC

SOLUTION (values of PVs) at the NODES: 

0.48421E+01  0.69311E+01  0.35371E-01 -0.18180E+01  0.69311E+01
0.32640E-01 -0.18186E+01  0.64000E-03  0.23040E-01  0.00000E+00
0.00000E+00  0.00000E+00
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Solution to Problem 7.45: The input data file and the edited output are presented
in Box P7.45.

Figure P7.45

Box P7.45: Input files and solutions for Problem 7.45.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

    Problem 5.33:  ANALYSIS OF A PLANE FRAME  (E-B element)
    4  1  0                                   MODEL, NTYPE, ITEM
    0  3                                      IELEM, NEM
    0  1                                      ICONT, NPRNT
    4                                         NNM
    0.3   30.0E6  192.0    100.0E0   600.0E0  0.0  -1.0 PR,SE,SL,SA,SI,CS,SN
    0.0   41.6667   0.0    0.0         0.0    1.0  HF, VF, PF, XB, CST, SNT
    1     2                                   NOD(1,J)
    0.3   30.0E6  240.0    100.0E0   1000.0E0  1.0  0.0
    0.0   0.0              1.0E4       96.0    0.0  1.0  Element 2
    2     3
    0.3   30.0E6  192.0    100.0E0   400.0E0  0.0  1.0
    0.0   0.0                0.0       0.0    0.0  0.0  Element 3
    3     4
    0                                         NCON
    4                                         NSPV
    1     2    0.0                            ISPV(I,J), VSPV(I)
    4     1    0.0                            ISPV(I,J), VSPV(I)
    4     2    0.0                            ISPV(I,J), VSPV(I)
    4     3    0.0                            ISPV(I,J), VSPV(I)
    0                                         NSSV
    0                                         NNBC
    0                                         NMPC

    SOLUTION (values of PVs) at the NODES: 

    0.12780E+01  0.00000E+00  0.44321E-02  0.55810E+00  0.41251E-03
    0.17014E-02  0.55746E+00  0.22749E-03 -0.17109E-02  0.00000E+00
    0.00000E+00  0.00000E+00

E = 30×106  lb/in2,
A = 100 in2.,  I = 200 in4

20 ft

16 ft

10 kips

50
0 

lb
/f

t

1

A

B C

D

2

3

8 ft

3I

5I

2I

°
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Solution to Problem 7.46: The input data file and the edited output are presented
in Box P7.46.

Figure P7.46

Box P7.46: Input files and solutions for Problem 7.46.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

E = 30×106  lb/in2,
A = 102 in2.,  I1 = 200 in4.
I2 = 102 in4.,  I3 = 200 in4.

10 ft

10 ft

10 kips  

5,000 lb-in.

1

A

B C

D

2

3

    Problem 5.34:  ANALYSIS OF A PLANE FRAME  (E-B element)
    4  1  0                                   MODEL, NTYPE, ITEM
    0  3                                      IELEM, NEM
    0  1                                      ICONT, NPRNT
    4                                         NNM
    0.3   30.0E6  120.0    10.0E0   200.0E0  0.0  -1.0 PR,SE,SL,SA,SI,CS,SN
    0.0    0.0      0.0     0.0       0.0    0.0  HF, VF, PF, XB, CST, SNT
    1     2                                   NOD(1,J)
    0.3   30.0E6  120.0    10.0E0   100.0E0  1.0  0.0
    0.0    0.0              0.0       0.0    0.0  1.0  Element 2
    2     3
    0.3   30.0E6  120.0    10.0E0   200.0E0  0.0  1.0
    0.0    0.0              0.0       0.0    0.0  0.0  Element 3
    3     4
    0                                         NCON
    6                                         NSPV
    1     1    0.0                            ISPV(I,J), VSPV(I)
    1     2    0.0                            ISPV(I,J), VSPV(I)
    1     3    0.0                            ISPV(I,J), VSPV(I)
    4     1    0.0                            ISPV(I,J), VSPV(I)
    4     2    0.0                            ISPV(I,J), VSPV(I)
    4     3    0.0                            ISPV(I,J), VSPV(I)
    2                                         NSSV
    2     1    1.0E4                          ISPV(I,J), VSPV(I)
    3     3    5.0E3                          ISPV(I,J), VSPV(I)
    0                                         NNBC
    0                                         NMPC

 SOLUTION (values of PVs) at the NODES: 
    0.00000E+00  0.00000E+00  0.00000E+00  0.21136E+00 -0.14813E-02
   -0.15260E-02  0.20936E+00  0.14813E-02 -0.14860E-02  0.00000E+00
    0.00000E+00  0.00000E+00
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Solution to Problem 7.47: The input data file and the edited output are presented
in Box P7.47.

Figure P7.47

Box P7.47: Input files and solutions for Problem 7.47.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

E = 30×106  lb/in2,
A = 102 in2.,  I1 = 200 in4.
I2 = 102 in4.,  I3 = 200 in4.

10 ft

1,000 lb/ft

10 ft

104 lbs.
5,000 lb-in.

1

A

B C

D

2

3

    Problem 5.35:  ANALYSIS OF A PLANE FRAME  (E-B element)
    4  1  0                                   MODEL, NTYPE, ITEM
    0  3                                      IELEM, NEM
    0  1                                      ICONT, NPRNT
    4                                         NNM
    0.3   30.0E6  120.0    10.0E0   200.0E0  0.0  -1.0 PR,SE,SL,SA,SI,CS,SN
    0.0    0.0      0.0     0.0       0.0    0.0  HF, VF, PF, XB, CST, SNT
    1     2                                   NOD(1,J)
    0.3   30.0E6  120.0    10.0E0   100.0E0  1.0  0.0
    0.0   1.0E3              0.0       0.0   0.0  1.0  Element 2
    2     3
    0.3   30.0E6  120.0    10.0E0   200.0E0  0.0  1.0
    0.0    0.0              0.0       0.0    0.0  0.0  Element 3
    3     4
    0                                         NCON
    6                                         NSPV
    1     1    0.0                            ISPV(I,J), VSPV(I)
    1     2    0.0                            ISPV(I,J), VSPV(I)
    1     3    0.0                            ISPV(I,J), VSPV(I)
    4     1    0.0                            ISPV(I,J), VSPV(I)
    4     2    0.0                            ISPV(I,J), VSPV(I)
    4     3    0.0                            ISPV(I,J), VSPV(I)
    2                                         NSSV
    2     1    1.0E4                          ISPV(I,J), VSPV(I)
    3     3    5.0E3                          ISPV(I,J), VSPV(I)
    0                                         NNBC
    0                                         NMPC

 SOLUTION (values of PVs) at the NODES: 
    0.00000E+00  0.00000E+00  0.00000E+00  0.21375E+00  0.22519E-01
   -0.63500E-02  0.20697E+00  0.25481E-01  0.33379E-02  0.00000E+00
    0.00000E+00  0.00000E+00
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Problem 7.48: Consider the axial motion of an elastic bar, governed by the second-
order equation

EA
∂2u

∂x2
= ρA

∂2u

∂t2
for 0 < x < L

with the following data: length of bar L = 500 mm, cross-sectional area A = 1 mm2,
modulus of elasticity E = 20, 000 N/mm2, density ρ = 0.008 N s2/mm4, boundary
conditions

u(0, t) = 0, EA
∂u

∂x
(L, t) = 1

and zero initial conditions. Using 20 linear elements and ∆t = 0.002 s, determine the
axial displacement and plot the displacement as a function of position along the bar
for t = 0.8 s.

Solution: The input file and edited output (axial displacements at various selected
times) are given in Box P7.48. Note that the program prints the displacements,
velocities, and accelerations for hyperbolic equations.

Box P7.48: Input files and solutions for Problem 7.48.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Problem 7.48: Transient response of an elastic bar
 1   0   2                        MODEL,NTYPE,ITEM
 1  20                            IELEM,NEM
 1   0                            ICONT,NPRNT
   0.0  25.0  25.0  25.0  25.0  25.0  25.0  25.0  25.0
        25.0  25.0  25.0  25.0  25.0  25.0  25.0  25.0
        25.0  25.0  25.0  25.0    DX(I)
   2.0E4   0.0                    AX0,AX1
   0.0     0.0                    BX0,BX1
   0.0     0.0                    CX0,CX1
   0.0     0.0     0.0            FX0,FX1,FX2
  1                               NSPV
  1   1    0.0                    ISPV(1,1),ISPV(1,2),VSPV(1)
  1                               NSSV
 21   1    1.0                    ISSV(1,1),ISSV(1,2),VSSV(1)
 0                                NNBC
 0                                NMPC
 8.0E-3    0.0                    CT0,CT1
 2.0E-3    0.5     0.5            DT,ALFA,GAMA
 0  500    100                    INCOND,NTIME,INTVL

   TIME =  0.2000E+00     Time step number =100
   SOLUTION (values of PVs) at the NODES: 

    0.00000E+00  0.54697E-04 -0.11854E-03  0.54311E-04  0.23066E-03
   -0.27094E-03 -0.35672E-03  0.90447E-04  0.92344E-03  0.21507E-02
    0.32665E-02  0.46103E-02  0.57717E-02  0.70923E-02  0.82894E-02
    0.95755E-02  0.10804E-01  0.12064E-01  0.13312E-01  0.14558E-01
    0.15815E-01



232 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

(Box P7.48 is continued from the previous page)

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

    TIME =  0.4000E+00     Time step number =200
    SOLUTION (values of PVs) at the NODES: 
    0.00000E+00  0.25152E-02  0.49542E-02  0.75113E-02  0.98158E-02
    0.12230E-01  0.14123E-01  0.15857E-01  0.16947E-01  0.17861E-01
    0.18926E-01  0.20205E-01  0.21843E-01  0.22921E-01  0.23977E-01
    0.25404E-01  0.26695E-01  0.27797E-01  0.29160E-01  0.30362E-01
    0.31627E-01

    TIME =  0.6000E+00     Time step number =300
    SOLUTION (values of PVs) at the NODES: 
    0.00000E+00  0.24959E-02  0.50120E-02  0.74687E-02  0.10062E-01
    0.12422E-01  0.15041E-01  0.17537E-01  0.19948E-01  0.22424E-01
    0.25204E-01  0.27415E-01  0.29841E-01  0.32590E-01  0.35123E-01
    0.37533E-01  0.39684E-01  0.42012E-01  0.44590E-01  0.46702E-01
    0.48523E-01

    TIME =  0.8000E+00     Time step number =400
    SOLUTION (values of PVs) at the NODES: 
    0.00000E+00  0.27337E-02  0.50497E-02  0.72729E-02  0.96550E-02
    0.12536E-01  0.15603E-01  0.18000E-01  0.20246E-01  0.22282E-01
    0.23973E-01  0.25203E-01  0.26784E-01  0.27938E-01  0.29259E-01
    0.30492E-01  0.31760E-01  0.33008E-01  0.34236E-01  0.35533E-01
    0.36722E-01

    TIME =  0.1000E+01     Time step number =500
    SOLUTION (values of PVs) at the NODES: 
    0.00000E+00  0.83400E-04  0.27476E-03  0.48860E-03  0.10348E-02
    0.17282E-02  0.28598E-02  0.42818E-02  0.58028E-02  0.74425E-02
    0.87185E-02  0.98499E-02  0.10740E-01  0.12112E-01  0.13345E-01
    0.14705E-01  0.16259E-01  0.17082E-01  0.18217E-01  0.19728E-01
    0.21149E-01
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Problem 7.49: Consider the following nondimensionalized differential equation
governing the plane wall transient:

−∂
2T

∂x2
+

∂T

∂t
= 0 for 0 < x < 1

with boundary conditions T (0, t) = 1 and T (1, t) = 0, and initial condition T (x, 0) =
0. Solve the problem using eight linear elements. Determine the critical time step;
solve the problem using the Crank-Nicholson method and ∆t = 0.002 s.

Solution: The critical time step can be determined by solving the associated
eigenvalue problem. The input file and edited output for the eigenvalue problem
is presented here. The maximum eigenvalue is λmax = 686.512. Hence, the critical
time step is ∆tcrit = 2.9 × 10−3. The input data file and selective output for the
transient analysis with ∆t = 2.0 × 10−3 are also presented. The exact solution is
given by

u(x, t) = 1− x− 2
π

∞X
n=1

sin nπx e−n
2π2t

n

Box P7.49: Input files and solutions for Problem 7.49.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

Problem 7.49a: Eigenvalue analysis of the heat transfer problem
    1  0  3       MODEL, NTYPE, ITEM
    1  8          IELEM, NEM
    1  0          ICONT, NPRNT
    0.0  0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 DX(I)
    1.0 0.0       AX0, AX1
    0.0 0.0       BX0, BX1
    0.0 0.0       CX0, CX1
    2             NSPV
    1   1         ISPV(1,1), ISPV(1,2)
    9   1         ISPV(2,1), ISPV(2,2)
    0             NNBC
    0             NMPC
    1.0 0.0       CT0, CT1

   EIGENVALUE( 1) =   0.686512E+03  SQRT(EGNVAL) =   0.26201E+02
   EIGENVALUE( 2) =   0.328291E+03  SQRT(EGNVAL) =   0.18119E+02
   EIGENVALUE( 3) =   0.999708E+01  SQRT(EGNVAL) =   0.31618E+01
   EIGENVALUE( 4) =   0.192000E+03  SQRT(EGNVAL) =   0.13856E+02
   EIGENVALUE( 5) =   0.507025E+03  SQRT(EGNVAL) =   0.22517E+02
   EIGENVALUE( 6) =   0.415466E+02  SQRT(EGNVAL) =   0.64457E+01
   EIGENVALUE( 7) =   0.994885E+02  SQRT(EGNVAL) =   0.99744E+01
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(Box P7.49 is continued from the previous page)

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Problem 7.49b: TRANSIENT HEAT CONDUCTION IN A PLANE WALL
   1  0  1                                   MODEL, NTYPE, ITEM
   1  8                                      IELEM, NEM
   1  1                                      ICONT, NPRNT
     0.0    0.125  0.125  0.125  0.125        
            0.125  0.125  0.125  0.125       DX(I) 
     1.0  0.0                                AX0, AX1
     0.0  0.0                                BX0, BX1
     0.0  0.0                                CX0, CX1
     0.0  0.0   0.0                          FX0,FX1,FX2
   2                                         NSPV
   1  1   1.0                                ISPV(1,J), VSPV(1)
   9  1   0.0                                ISPV(2,J), VSPV(2)
     0                                       NSSV
     0                                       NNBC
     0                                       NMPC
     1.0   0.0                               CT0, CT1
     0.002 0.5   0.0                         DT, ALFA, GAMA
     0     200   10                          INCOND, NTIME, INTVL

 TIME =  0.2000E-01     Time step number = 10
 SOLUTION (values of PVs) at the NODES: 
 0.10000E+01  0.52569E+00  0.19606E+00  0.43344E-01  0.20180E-02
-0.12904E-02 -0.83545E-04  0.63020E-04  0.00000E+00

    TIME =  0.4000E-01     Time step number = 20
    SOLUTION (values of PVs) at the NODES: 
    0.10000E+01  0.65658E+00  0.37170E+00  0.17678E+00  0.68208E-01
    0.20148E-01  0.40103E-02  0.33287E-03  0.00000E+00

    TIME =  0.6000E-01     Time step number = 30
    SOLUTION (values of PVs) at the NODES: 
    0.10000E+01  0.71722E+00  0.46795E+00  0.27461E+00  0.14317E+00
    0.65341E-01  0.25560E-01  0.79606E-02  0.00000E+00

    TIME =  0.8000E-01     Time step number = 40
    SOLUTION (values of PVs) at the NODES: 
    0.10000E+01  0.75404E+00  0.53042E+00  0.34574E+00  0.20739E+00
    0.11348E+00  0.55508E-01  0.21775E-01  0.00000E+00

    TIME =  0.1000E+00     Time step number = 50
    SOLUTION (values of PVs) at the NODES: 
    0.10000E+01  0.77941E+00  0.57507E+00  0.39973E+00  0.26035E+00
    0.15745E+00  0.85990E-01  0.37138E-01  0.00000E+00

    TIME =  0.2000E+00     Time step number =100
    SOLUTION (values of PVs) at the NODES: 
    0.10000E+01  0.84119E+00  0.68756E+00  0.54346E+00  0.41181E+00
    0.29359E+00  0.18773E+00  0.91312E-01  0.00000E+00
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Note: Modify program FEM1D to solve Problems 7.50—7.52 (solutions to these
problems are not presented here for obvious reasons).

Problem 7.50: Consider a simply supported beam of length L subjected to a point
load

P (t) =

½
P0 sin

πt
τ for 0 ≤ t ≤ τ

0 for t ≥ τ

at a distance c from the left end of the beam (assumed to be at rest at t = 0). The
transverse deflection w(x, t) is given by [see Harris and Crede (1961), p. 8—53]

w(x, t) =⎧⎪⎪⎨⎪⎪⎩
2P0L3

π4EI

P∞
i=1

1
i4
sin iπcL sin

iπx
L

∙
1

1−T 2i /4τ2
³
sin πt

τ −
Ti
2τ sinωit

´¸
, 0 ≤ t ≤ τ

2P0L3

π4EI

P∞
i=1

1
i4
sin iπcL sin

iπx
L

"
Ti
τ
cos πτ

Ti

T 2i /4τ
2−1 sinωi(t−

1
2τ)

#
, t ≥ τ

where

Ti =
2π

ωi
=
2L2

i2π

s
Aρ

EI
=
T1
i2

Use the data P0 = 1000 lb, τ = 20 × 10−6 s, L = 30 in, E = 30 × 106 lb/in2,
ρ = 733 × 10−6 lb/in3, ∆t = 10−6 s, and assume that the beam is of square cross-
section of 0.5 in by 0.5 in. Using five Euler—Bernoulli beam elements in the half-beam,
obtain the finite element solution and compare with the series solution at midspan
for the case c = L

2 .

Problem 7.51: Repeat Problem 7.50 for c = 1
4L and eight elements in the full span.

Problem 7.52: Repeat Problem 7.50 for P (t) = P0 at midspan and eight elements
in the full span.

Problem 7.53: Consider a cantilevered beam with a point load P0 at the free end.
Using the data of Problem 7.50, find the finite element solution for the transverse
deflection using eight Euler—Bernoulli beam elements.

Solution: We have the following data:

EI = (30× 106) 1
192

= 0.15625× 106 lb-in2

ρA = (733× 10−6)(0.25) = 1.8325× 10−4 lb/in

The input file and edited output (generalized displacements at various selected times)
are presented in Box P7.51.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.
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Box P7.53: Input files and solutions for Problem 7.53.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

    Problem 7.53: TRANSIENT RESPONSE OF A CANTILEVER BEAM (EBT)
    3  0  2                                   MODEL, NTYPE, ITEM
    0  8                                      IELEM, NEM
    1  0                                      ICONT, NPRNT
      0.0  3.75  3.75  3.75  3.75  3.75  3.75
           3.75  3.75                         DX(I)
      0.0  0.0                                AX0, AX1
      0.15625E6  0.0                          BX0, BX1
      0.0  0.0                                CX0, CX1
      0.0  0.0   0.0                          FX0, FX1, FX2
      2                                       NSPV
    1  1   0.0                                ISPV(1,J), VSPV(1)
    1  2   0.0                                ISPV(2,J), VSPV(2)
    1                                         NSSV
    9  1   1.0E3                              ISSV(1,J), VSSV(1)
    0                                         NNBC
    0                                         NMPC
    1.8325E-4    0.0                          CT0, CT1
    1.0E-6  0.5  0.5                          DT, ALFA, GAMA
    0      51    5                            INCOND,NTIME,INTVL

    TIME =  0.5000E-05     Time step number =  5
    SOLUTION (values of PVs) at the NODES: 
    0.00000E+00  0.00000E+00  0.91461E-08 -0.21328E-07  0.28851E-07
   -0.90666E-07  0.10261E-06 -0.33033E-06  0.36887E-06 -0.11899E-05
    0.13275E-05 -0.42823E-05  0.48128E-05 -0.15451E-04  0.19895E-04
   -0.58685E-04  0.24767E-03 -0.42301E-03

    TIME =  0.1000E-04     Time step number = 10
    SOLUTION (values of PVs) at the NODES: 
    0.00000E+00  0.00000E+00  0.20758E-07 -0.47220E-07  0.72149E-07
   -0.21496E-06  0.27807E-06 -0.84731E-06  0.10743E-05 -0.32909E-05
    0.41341E-05 -0.12706E-04  0.15977E-04 -0.48987E-04  0.70903E-04
   -0.19940E-03  0.94584E-03 -0.15764E-02

    TIME =  0.2000E-04     Time step number = 20
    SOLUTION (values of PVs) at the NODES: 
    0.00000E+00  0.00000E+00 -0.64801E-07  0.16003E-06 -0.14930E-06
    0.56664E-06 -0.32366E-06  0.14920E-05 -0.33649E-06  0.29516E-05
    0.21294E-05  0.71834E-06  0.21526E-04 -0.37938E-04  0.16598E-03
   -0.33932E-03  0.31820E-02 -0.47640E-02

    TIME =  0.4000E-04     Time step number = 40
    SOLUTION (values of PVs) at the NODES: 
    0.00000E+00  0.00000E+00  0.28465E-06 -0.77774E-06  0.25473E-06
   -0.19349E-05 -0.10556E-05 -0.10096E-05 -0.94392E-05  0.16657E-04
   -0.46654E-04  0.11630E-03 -0.17115E-03  0.51888E-03 -0.30740E-03
    0.15506E-02  0.80131E-02 -0.73833E-02
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(Box P7.53 is continued from the previous page)

Problem 7.54: Repeat Problem 7.53 for a clamped beam with the load at the
midspan.

Solution: The input file and edited output (generalized displacements at various
selected times) are presented in Box P7.54. Half-beam model is used because of the
symmetry about the center of the beam.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

    TIME =  0.5000E-04     Time step number = 50
    SOLUTION (values of PVs) at the NODES: 
    0.00000E+00  0.00000E+00  0.10765E-05 -0.25410E-05  0.29062E-05
   -0.10006E-04  0.70989E-05 -0.29359E-04  0.10348E-04 -0.65956E-04
   -0.20299E-04 -0.64495E-04 -0.23771E-03  0.36648E-03 -0.85340E-03
    0.24843E-02  0.10930E-01 -0.81801E-02
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Box P7.54: Input files and solutions for Problem 7.54.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Problem 7.54: TRANSIENT RESPONSE OF A CLAMPED BEAM (EBT)
    3  0  2                             MODEL, NTYPE, ITEM
    0  4                                IELEM, NEM
    1  0                                ICONT, NPRNT
      0.0  3.75  3.75  3.75  3.75       DX(I)
      0.0  0.0                          AX0, AX1
      0.15625E6  0.0                    BX0, BX1
      0.0  0.0                          CX0, CX1
      0.0  0.0   0.0                    FX0, FX1, FX2
      3                                 NSPV
    1  1   0.0                          ISPV(1,J), VSPV(1)
    1  2   0.0                          ISPV(2,J), VSPV(2)
    5  2   0.0                          ISPV(2,J), VSPV(2)
    1                                   NSSV
    5  1   0.5E3                        ISSV(1,J), VSSV(1)
    0                                   NNBC
    0                                   NMPC
    1.8325E-4    0.0                    CT0, CT1
    1.0E-6  0.5  0.5                    DT, ALFA, GAMA
    0      51    5                      INCOND, NTIME, INTVL

 TIME =  0.5000E-05     Time step number =  5
 SOLUTION (values of PVs) at the NODES: 
 0.00000E+00  0.00000E+00 -0.45624E-06  0.10645E-05 -0.14270E-05
 0.45087E-05 -0.43840E-05  0.15584E-04  0.30854E-04  0.00000E+00

    TIME =  0.1000E-04     Time step number = 10
    SOLUTION (values of PVs) at the NODES: 
    0.00000E+00  0.00000E+00 -0.16363E-05  0.37590E-05 -0.54434E-05
    0.16620E-04 -0.17606E-04  0.60291E-04  0.12258E-03  0.00000E+00

    TIME =  0.2000E-04     Time step number = 20
    SOLUTION (values of PVs) at the NODES: 
    0.00000E+00  0.00000E+00 -0.38667E-05  0.80521E-05 -0.17751E-04
    0.46017E-04 -0.71250E-04  0.21054E-03  0.47758E-03  0.00000E+00

    TIME =  0.4000E-04     Time step number = 40
    SOLUTION (values of PVs) at the NODES: 
    0.00000E+00  0.00000E+00  0.98896E-05 -0.28949E-04 -0.18782E-04
   -0.29683E-04 -0.28350E-03  0.46693E-03  0.17445E-02  0.00000E+00

    TIME =  0.5000E-04     Time step number = 50
    SOLUTION (values of PVs) at the NODES: 
    0.00000E+00  0.00000E+00  0.25132E-04 -0.60873E-04  0.15157E-04
   -0.16284E-03 -0.42440E-03  0.43318E-03  0.25796E-02  0.00000E+00
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Problem 7.55: Repeat Problem 7.54 using four linear Timoshenko beam elements.
Use ν = 0.3.

Solution: The input file and edited output (generalized displacements at various
selected times) are presented in Box P7.55.

Box P7.55: Input files and solutions for Problem 7.55.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Problem 7.55: TRANSIENT RESPONSE OF A CLAMPED BEAM (TBT)
    2  0  2                             MODEL, NTYPE, ITEM
    1  4                                IELEM, NEM
    1  0                                ICONT, NPRNT
      0.0  3.75  3.75  3.75  3.75       DX(I)
      2.40385E6  0.0                    AX0(GAK), AX1
      0.15625E6  0.0                    BX0, BX1
      0.0  0.0                          CX0, CX1
      0.0  0.0   0.0                    FX0, FX1, FX2
      3                                 NSPV
    1  1   0.0                          ISPV(1,J), VSPV(1)
    1  2   0.0                          ISPV(2,J), VSPV(2)
    5  2   0.0                          ISPV(2,J), VSPV(2)
    1                                   NSSV
    5  1   0.5E3                        ISSV(1,J), VSSV(1)
    0                                   NNBC
    0                                   NMPC
    1.8325E-4    7.6354E-6              CT0, CT1
    1.0E-6  0.5  0.5                    DT, ALFA, GAMA
    0      51    5                      INCOND, NTIME, INTVL

    TIME =  0.5000E-05     Time step number =  5
    0.00000E+00  0.00000E+00 -0.51238E-06 -0.94728E-06  0.21183E-05
    0.23337E-05 -0.81641E-05 -0.39176E-05  0.31142E-04  0.00000E+00

    TIME =  0.1000E-04     Time step number = 10
    0.00000E+00  0.00000E+00 -0.12760E-05 -0.12829E-04  0.68885E-05
    0.27880E-04 -0.30044E-04 -0.38862E-04  0.12140E-03  0.00000E+00

    TIME =  0.4000E-04     Time step number = 40
    0.00000E+00  0.00000E+00  0.21639E-03 -0.18854E-03 -0.22104E-03
    0.51142E-03 -0.91370E-04 -0.70396E-03  0.15301E-02  0.00000E+00

    TIME =  0.5000E-04     Time step number = 50
    0.00000E+00  0.00000E+00  0.41820E-03 -0.22313E-03 -0.46789E-03
    0.71807E-03  0.14228E-04 -0.10481E-02  0.22187E-02  0.00000E+00

 SOLUTION (values of PVs) at the NODES: 



240 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

Problem 7.56: Repeat Problem 7.55 using two quadratic Timoshenko beam
elements.

Solution: The input file and edited output (generalized displacements at various
selected times) are presented in Box P7.56.

Box P7.56: Input files and solutions for Problem 7.56.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Problem 7.56: TRANSIENT RESPONSE OF A CLAMPED BEAM (TBT)
    2  0  2                             MODEL, NTYPE, ITEM
    2  2                                IELEM, NEM
    1  0                                ICONT, NPRNT
      0.0  7.5   7.5                    DX(I)
      2.40385E6  0.0                    AX0(GAK), AX1
      0.15625E6  0.0                    BX0, BX1
      0.0  0.0                          CX0, CX1
      0.0  0.0   0.0                    FX0, FX1, FX2
      3                                 NSPV
    1  1   0.0                          ISPV(1,J), VSPV(1)
    1  2   0.0                          ISPV(2,J), VSPV(2)
    5  2   0.0                          ISPV(2,J), VSPV(2)
    1                                   NSSV
    5  1   0.5E3                        ISSV(1,J), VSSV(1)
    0                                   NNBC
    0                                   NMPC
    1.8325E-4    7.6354E-6              CT0, CT1
    1.0E-6  0.5  0.5                    DT, ALFA, GAMA
    0      51    5                      INCOND, NTIME, INTVL

    TIME =  0.5000E-05     Time step number =  5
    0.00000E+00  0.00000E+00 -0.73758E-06 -0.11769E-05  0.61462E-05
    0.39837E-05 -0.53779E-05 -0.34758E-05  0.37961E-04  0.00000E+00

    TIME =  0.1000E-04     Time step number = 10
    0.00000E+00  0.00000E+00 -0.20092E-05 -0.12355E-04  0.21609E-04
    0.38725E-04 -0.19337E-04 -0.31665E-04  0.14708E-03  0.00000E+00

    TIME =  0.2000E-04     Time step number = 20
    0.00000E+00  0.00000E+00  0.88225E-05 -0.47017E-04  0.45225E-04
    0.15869E-03 -0.52794E-04 -0.13197E-03  0.53852E-03  0.00000E+00

    TIME =  0.4000E-04     Time step number = 40
    0.00000E+00  0.00000E+00  0.19414E-03 -0.79225E-04 -0.20923E-03
    0.50082E-03  0.22882E-04 -0.49078E-03  0.16785E-02  0.00000E+00

    TIME =  0.5000E-04     Time step number = 50
    0.00000E+00  0.00000E+00  0.37179E-03 -0.64309E-04 -0.50744E-03
    0.69514E-03  0.15055E-03 -0.73498E-03  0.23851E-02  0.00000E+00

SOLUTION (values of PVs) at the NODES: 



Chapter 8

SINGLE-VARIABLE

PROBLEMS

IN TWO DIMENSIONS

Note: Most of the problems given here require hand calculations only. When four or
more simultaneous algebraic equations are to be solved, they should be left in matrix
form. New problems can be created by mere change of data and meshes.

Problem 8.1: For a linear triangular element, show that

3X
i=1

αei = 2Ae,
3X
i=1

βei = 0,
3X
i=1

γei = 0

αei + βei x̂
e + γei ŷ

e =
2

3
Ae for any i

where

x̂e =
3X
i=1

xei , ŷe =
3X
i=1

yei

and (xei , y
e
i ) are the coordinates of the ith node of the element (i = 1, 2, 3).

Solution: First recall that (element label is omitted)

2Ae =

¯̄̄̄
¯̄ 1 x1 y1
1 x2 y2
1 x3 y3

¯̄̄̄
¯̄

= 1 · (x2y3 − x3y2)− 1 · (x1y3 − x3y1) + 1 · (x1y2 − x2y1)
= (x1y2 − x2y1) + (x2y3 − x3y2) + (x3y1 − x1y3)

Then we have

3X
i=1

αei = (x2y3 − x3y2) + (x3y1 − x1y3) + (x1y2 − x2y1) = 2Ae

3X
i=1

βei = (y2 − y3) + (y3 − y1) + (y1 − y2) = 0

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.
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3X
i=1

γei = −(x2 − x3)− (x3 − x1)− (x1 − x2) = 0

αei + βei x̂
e + γei ŷ

e = (x2y3 − x3y2) + (y2 − y3)(x1 + x2 + x3)
− (x2 − x3)(y1 + y2 + y3)

= (x2y3 − x3y2) + (y2x1 − y1x2) + (x3y1 − y3x1)
+ 2(y2x3 − y3x2)

Problem 8.2: Consider the partial differential equation over a typical element Ωe
with boundary Γe

−∇2u+ cu = 0 in Ωe, with
∂u

∂n
+ βu = qn on Γe

Develop the weak form and finite element model of the equation over an element Ωe.

Solution: Note that the operators ∇2 and ∂/∂n in two dimensions are

∇2 = ∂2

∂x2
+

∂2

∂y2
,

∂

∂n
= nx

∂

∂x
+ ny

∂

∂y

Following the three-step procedure, the weak form is obtained as

0 =

Z
Ωe

µ
∂w

∂x

∂u

∂x
+

∂w

∂y

∂u

∂y
+ cwu

¶
dxdy +

I
Γe
βwuds−

I
Γe
wqnds (i)

where w is the weight function. The finite element model is

[Ke]{ue} = {Qe} (ii)

where

Ke
ij =

Z
Ωe

µ
∂ψi
∂x

∂ψj
∂x

+
∂ψi
∂y

∂ψj
∂y

+ cψiψj

¶
dxdy +

I
Γe
βψiψjds

Qei =

I
Γe
ψiqnds (iii)

Here qn denotes the flux normal to the element boundary. The problem is one of
convective heat transfer type (with k = 1, u∞ = 0 and g = 0).

Problem 8.3: Assuming that c and β are constant in Problem 8.2, write the element
coefficient matrix and source vector for a linear (a) rectangular element and (b)
triangular element.
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Solution: (a) Linear Rectangular Element. The element coefficient matrix is given
by [Ke] = [S11] + [S22] + c[S00] + β[H] where the matrices [Sαβ ] for α,β = 0, 1, 2 are
defined in Eqs. (8.2.52) and (8.5.10a). The source vector is zero.
(b) Linear Triangular Element. The element coefficient matrix is given by

[Ke] = [K̄] + c[S00]e + β[He] where [K̄] is defined by Eq. (8.2.47), [He] is given
by Eq. (8.5.8a), and [S00] is defined as

S00ij =

Z
Ωe

ψiψj dxdy

For linear triangular element, the coefficients are given by

S00ij =
1

4A2
[αiαj + (αiβj + αjβi)I10 + (αiγj + αjγi)I01 + βiβjI20

+(βiγj + βjγi)I11 + γiγjI02]

where Iij are defined in Eqn. (8.2.40). For a right-angle triangle, [S
00] is given by

[S00] =
ab

24

⎡⎣ 2 1 1
1 2 1
1 1 2

⎤⎦

Problem 8.4: Calculate the linear interpolation functions for the linear triangular
and rectangular elements shown in Fig. P8.4.

Figure P8.4

Solution: (a) Triangular Element: The coefficients αi,βi and γi for the element
shown are:

α1 = 12.25, α2 = −1.5, α3 = −2.5, β1 = −2.5, β2 = 3.0
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β3 = −0.5, γ1 = −1.5, γ2 = −1.5, γ3 = 3.0

The interpolation functions become (2A = α1 + α2 + α3)

ψ1 =
1

8.25
(12.25− 2.5x− 1.5y) , ψ2 =

1

8.25
(−1.5 + 3x− 1.5y)

ψ3 =
1

8.25
(−2.5− 0.5x+ 3y)

(b) Rectangular Element: The interpolation functions can be written directly in
terms of the local coordinates (x̄, ȳ) using the interpolation property

ψi(x̄j , ȳj) = δij

For example, consider ψ1(x̄, ȳ). It must vanish at nodes 2, 3, and 4. Also, since ψ1 is
a linear function that vanishes at nodes 2 and 3, it should necessarily be zero along
the line, x̄ = 3.5, connecting nodes 2 and 3. Similary, it should be zero along the line
ȳ = 2.5; Thus we have

ψ1(x̄, ȳ) = c(3.5− x̄)(2.5− ȳ)

Since ψ1 is unity at node 1: x̄ = 0 and ȳ = 0, we obtain c = 1/(3.5)(2.5). Thus we
have

ψ1 =

µ
1− x̄

3.5

¶µ
1− ȳ

2.5

¶
Similarly, we obtain

ψ2 =
x̄

3.5

µ
1− ȳ

2.5

¶
, ψ3 =

x̄

3.5

ȳ

2.5
, ψ4 =

µ
1− x̄

3.5

¶
ȳ

2.5

Problem 8.5: The nodal values of a triangular element in the finite element analysis
of a field problem, −∇2u = f0 are:

u1 = 389.79, u2 = 337.19, u3 = 395.08

The interpolation functions of the element are given by

ψ1 =
1

8.25
(12.25− 2.5x− 1.5y) , ψ2 =

1

8.25
(−1.5 + 3x− 1.5y)

ψ3 =
1

8.25
(−2.5− 0.5x+ 3y)

(a) Find the component of the flux in the direction of the vector 4̂i + 3ĵ at x = 3
and y = 2. (b) A point source of magnitude Q0 is located at point (x0, y0)=(3,2)
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inside the triangular element. Determine the contribution of the point source to the
element source vector. Express your answer in terms of Q0.

Solution: (a) The finite element solution uh and its gradient ∇uh are given by

uh(x, y) = u1ψ1 + u2ψ2 + u3ψ3

∇uh = u1
µ
î
∂ψ1
∂x

+ ĵ
∂ψ1
∂y

¶
+ u2

µ
î
∂ψ2
∂x

+ ĵ
∂ψ2
∂y

¶
+ u3

µ
î
∂ψ3
∂x

+ ĵ
∂ψ3
∂y

¶
=
389.79

8.25

³
−2.5̂i− 1.5ĵ

´
+
337.19

8.25

³
3.0̂i− 1.5̂j

´
+
395.08

8.25

³
−0.5̂i+ 3.0̂j

´
= −19.45̂i+ 11.49̂j

where î and ĵ are the unit base vectors along the x- and y-coordinates. Note that the
gradient of the solution is a constant for a linear triangular element.

(b) The contribution of point source Q0 to the nodal source vector is

fi = Q0ψi(x0, y0) = Q0ψi(3, 2); f1 = 1.75Q0, f2 = 4.5Q0, f3 = 2Q0

Problem 8.6: The nodal values of an element in the finite-element analysis of a
field problem −∇2u = f0 are u1 = 389.79, u2 = 337.19, and u3 = 395.08 (see Fig.
P8.6). (a) Find the gradient of the solution, and (b) Determine where the 392 isoline
intersects the boundary of the element in Fig. P8.6.

Figure P8.6

Solution: (a) The gradient of u(x, y) is given by

∇u =
nX
j=1

uj

µ
∂ψj
∂x
ê1 +

∂ψj
∂y
ê2

¶
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where ê1 and ê2 are the unit vectors along the x and y axes, respectively. Thus we
need to find the interpolation functions for the element at hand. We have

α1 = 2.5, α2 = −1.75, α3 = −0.5, β1 = −0.5, β2 = 0.5

β3 = 0.0, γ1 = −0.5, γ2 = 0.0, γ3 = 0.5

The interpolation functions become (2A = α1 + α2 + α3 = 0.25)

ψ1 = (10− 2x− 2y) , ψ2 = (−7 + 2x) , ψ3 = (−2 + 2y)

∂ψ1
∂x

= −2, ∂ψ1
∂y

= −2, ∂ψ2
∂x

= 2

∂ψ2
∂y

= 0,
∂ψ3
∂x

= 0,
∂ψ3
∂y

= 2

Thus we have (u1 = 389.79, u2 = 395.08, u3 = 337.19)

∇u = 2 [(−389.79 + 395.08)ê1 + (−389.79 + 337.19)ê2] = 10.58ê1 − 105.20ê2

For the element at hand the result can be obtained directly as

∇u = u2 − u1
0.5

ê1 +
u3 − u1
0.5

ê2 = 10.58ê1 − 105.20ê2

(b) The u = 392 line intersects the horizontal line at a distance of x0 from node 1,

x0 = 0.5
392− 389.79
395.08− 389.79 = 0.2089

and it intersects the diagonal line at a distance s0 from node 3,

s0 =
1√
2

392− 337.19
395.08− 337.19 = 0.6694

Thus, the global coordinates of the point where the 392 isotherm intersects the line
connecting global nodes 10 and 11 is (x, y)=(3.7089,1); it intersects the line connecting
global nodes 11 and 12 at the point (x, y)=(3.9734,1.0266).

Problem 8.7: If the nodal values of the elements shown in Fig. P8.7 are u1 = 0.2645,
u2 = 0.2172, u3 = 0.1800 for the triangular element and u1 = 0.2173, u3 = 0.1870,
u2 = u4 = 0.2232 for the rectangular element, compute u, ∂u/∂x and ∂u/∂y at the
point (x, y) = (0.375, 0.375).

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.



1 2

3

x

y

0.5

0.5
x

y

3

2

4

1

0.5

0.5

SOLUTIONS MANUAL 247

Figure P8.7(a) Figure P8.7(b)

Solution: The function u(x, y) and its derivatives in the finite element method are
given by (for any element)

u(x, y) =
nX
j=1

ujψj(x, y),
∂u

∂x
=

nX
j=1

uj
∂ψj
∂x

,
∂u

∂y
=

nX
j=1

uj
∂ψj
∂y

Clearly, the derivatives for the linear triangular element are element-wise constant;
for rectangular element ∂u/∂x is linear in y and ∂u/∂y is linear in x.
First, we must determine the interpolation functions for each of the elements to

find the values of u and its derivatives at x = 0.375 and y = 0.375.
(a) Triangular Element: We have

α1 = 0.25, α2 = 0.0, α3 = 0.0, β1 = −0.5, β2 = 0.5

β3 = 0.0, γ1 = 0.0, γ2 = −0.5, γ3 = 0.5

The interpolation functions become (2A = α1 + α2 + α3 = 0.25)

ψ1 = (1− 2x) , ψ2 = 2 (x− y) , ψ3 = 2y

and the required value of u and its derivatives are

u(0.375, 0.375) = 0.2645× 0.25 + 0.1800× 0.75 = 0.2011
∂u

∂x
= u1(−2.0) + u2(2.0) + 0 = −0.0946

∂u

∂y
= 0 + u2(−2.0) + u3(2.0) = −0.0744

(b) Rectangular Element: The interpolation functions are

ψ1 = (1− 2x)(1− 2y), ψ2 = 2x(1− 2y), ψ3 = 4xy, ψ4 = (1− 2x)2y
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and the values of u and its derivatives are

u(0.375, 0.375) = u1(0.25)(0.25) + u2(0.75)(0.25) + u3(0.375)(0.375)

+ u4(0.25)(0.75) = 0.2025

∂u

∂x
= u1(−2)(0.25) + u2(2)(0.25) + 4u3(0.375) + u4(−2)(0.75)
= −0.05135

∂u

∂y
= u1(−2)(0.25) + u2(−2)(0.75) + u3(1.5) + u4(2)(0.25)

= −0.05135

Problem 8.8: Compute the contribution of the Pump 2 discharge to the nodes of
element 43 in the groundwater flow problem of Example 8.5.4.

Solution: Pump 2 is located at (x, y) = (600, 1900) (see Fig. 8.5.6). The nodal
coordinates of the element in which Pump 2 is located are

(x1, y1) = (375, 1687.5), (x2, y2) = (750, 1875), (x3, y3) = (375, 2125)

In local coordinates (x̄, ȳ), where x̄ = x− 375 and ȳ = y− 1687.5, the element nodes
are

(x̄1, ȳ1) = (0, 0), (x̄2, ȳ2) = (375, 187.5), (x̄3, ȳ3) = (0, 437.5)

Then the rate of pumping is

Q2 = −2, 400δ(x̄− 225, ȳ − 212.5)m3/day/m
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The interpolation functions of the element are

ψi(x̄, ȳ) =
1

2A
(αi + βix̄+ γiȳ), (i = 1, 2, 3)

2A = 375× 437.5, α1 = 375× 437.5, α2 = 0, α3 = 0

β1 = −250, β2 = 437.5, β3 = −187.5, γ1 = −375, γ2 = 0, γ3 = 375

Hence, the contributions of Pump 2 to the global nodes 27, 28 and 32 are

F27 = −2, 400ψ1(225, 212.5) = −411.429
F28 = −2, 400ψ2(225, 212.5) = −1, 440
F32 = −2, 400ψ3(225, 212.5) = −548.571

Problem 8.9: Find the coefficient matrix associated with the Laplace operator when
the rectangular element in Fig. P8.9(a)is divided into two triangles by joining node
1 to node 3 [see Fig. P8.9(b)]. Compare the resulting matrix that of the rectangular
element in Eq. (8.2.54).

Figure P8.9

Solution: The coefficient matrix associated with the assembly of two triangular
elements is given by [see Fig. 8.2.10(a) and Eq. (8.2.49)]

[Ke] =

⎡⎢⎢⎣
K1
33 +K

2
22 K1

31 K1
32 +K

2
23 K2

21

K1
13 K1

11 K1
12 0

K1
23 +K

2
32 K1

21 K1
22 +K

2
33 K2

31

K2
12 0 K2

13 K2
11

⎤⎥⎥⎦
Using the coefficient matrix from Eq. (8.2.49) with ke = 1, we obtain

[Ke] =
1

2ab

⎡⎢⎢⎣
a2 + b2 −a2 0 −b2
−a2 a2 + b2 −b2 0
0 −b2 a2 + b2 −a2
−b2 0 −a2 a2 + b2

⎤⎥⎥⎦
Compare this result that in Eq. (8.2.54) for ke = 1 (they are not the same).
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Problem 8.10: Compute the element matrices

S01ij =

Z a

0

Z b

0
ψi
dψj
dx

dx dy, S02ij =

Z a

0

Z b

0
ψi
dψj
dy

dx dy

where ψi(x, y) are the linear interpolation functions of a rectangular element with
sides a and b.

Solution: The coefficients S01ij are given by

S01ij =

Z b

0

Z a

0
ψi
∂ψj
∂x
dxdy

where ψi for the rectangular element are given by Eqn. (8.2.32a). Using the following
integral values,Z a

0

µ
1− x

a

¶
dx =

a

2
,

Z a

0

µ
1− x

a

¶2
dx =

a

3
,

Z a

0

µ
1− x

a

¶
x

a
dx =

a

6

and similar values for integrals over (0, b), we obtain

[S01] =
b

12

⎡⎢⎢⎣
−2 2 1 −1
−2 2 1 −1
−1 1 2 −2
−1 1 2 −2

⎤⎥⎥⎦
Similary, we have

S02ij =

Z b

0

Z a

0
ψi
∂ψj
∂y
dxdy

[S02] =
a

12

⎡⎢⎢⎣
−2 −1 1 2
−1 −2 2 1
−1 −2 2 1
−2 −1 1 2

⎤⎥⎥⎦
Problem 8.11: Give the assembled coefficient matrix for the finite element meshes
shown in Figs. P8.11(a) and P8.11(b). Assume 1 degree of freedom per node, and let
[Ke] denote the element coefficient matrix for the eth element. Your answer should
be in terms of element matrices Ke

ij .
Solution: Typical coefficients of the assembled matrices are given by

(a) K11 = K
1
11, K12 = K

1
14, K13 = 0, K14 = K

1
12, K15 = K

1
13

K16 = 0, K17 = 0, K18 = 0, K22 = K
1
44 +K

2
11, K25 = K

1
43 +K

2
12

(b) K11 = K
2
22, K12 = K

2
23, K13 = 0, K14 = K

2
21, K15 = K

2
24

K16 = 0, K17 = 0, K1(10) = 0, K77 = K
3
33 +K

4
11 +K

5
22
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Figure P8.11(a) Figure P8.11(b)

Problem 8.12: Repeat Problem 8.11 for the mesh shown in Fig. P8.12.

Solution: Typical assembled coefficients are

K11 = K
3
11, K12 = K

3
16, K13 = K

3
14, K14 = 0, K15 = 0

K16 = K
3
13, K17 = K

3
15, K18 = K

3
12, K22 = K

3
66, K25 = 0

K66 = K
3
33 +K

1
22 +K

2
11, K67 = K

2
15 +K

3
35, K68 = K

2
12 +K

3
32

K6(12) = K
1
24, K69 = K

1
28, K6(10) = K

1
26, K9(14) = K

1
83

K7(12) = 0, K75 = 0, K1(10) = 0, K77 = K
3
55 +K

2
55, K9(10) = K

1
86

Problem 8.13: Compute the global source vector corresponding to the non-zero
specified boundary flux for the finite element meshes of linear elements shown in Fig.
P8.13.
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Figure P8.13

Solution: We use the node numbers shown in Fig. P8.13. The nodal contributions
are denoted by QI , where I denotes the global node number. We have

Q1 =
q0h1
2

= 0.75q0, Q2 =
q0h1
2

+
q0h2
2

= 1.5q0

Q3 = 0.75q0 + 0.5q0 = 1.25q0, Q4 = 0.5q0 + 0.5(0.5q1
√
5) +

2

3

1

2
(0.5q1

√
5)

Q9 =
1

3
(0.25q1

√
5) + 0.25q1

√
5 +

2

3
(0.25q1

√
5)

Q15 =
1

3
(0.25q1

√
5)

Problem 8.14: Repeat Problem 8.13 for the finite element mesh of quadratic
elements shown in Fig. P8.14.

Figure P8.14
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Solution: The elements are quadratic, and therefore we must use the 1-D quadratic
interpolation functions

ψ1 =

µ
1− 2x

h

¶µ
1− x

h

¶
, ψ2 = 4

x

h

µ
1− x

h

¶
, ψ3 = −

x

h

µ
1− 2x

h

¶
The flux is given by qn = q0x/h and h = 5cm. Evaluating the boundary integral for
a typical quadratic element we obtain,

Qe1 =

Z h

0
qn

µ
1− 3x

h
+ 2

x

h

2
¶
dx = 0

Similarly, we obtain

Qe2 =
q0h

3
, Qe3 =

q0h

6

Hence, the contribution to the global nodes is

Q1 = 0.0, Q2 =
q0h

3
, Q3 = 2

q0h

6
, Q4 = Q2 =

q0h

3
, Q5 = 0

Problem 8.15: A line source of intensity q0 is located across the triangular element
shown in Fig. P8.15. Compute the element source vector.

Figure P8.15

Solution: The line source of uniform intensity q0 along the line AB is distributed to
the points A: (3,3) and B: (5,4) as QA = QB = q0h/2, where h is the length of the
line AB: h =

√
5. Now we can use the procedure of Problem 8.5(b) to distribute the

point sources QA and QB to the element nodes:

Q1 =
QA
2
, Q2 =

QB
3
, Q3 =

QA
2
+
2QB
3

(i)

or

Q1 =
q0h

4
, Q2 =

q0h

6
, Q3 =

q0h

4
+
q0h

3
(ii)
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Problem 8.16: Repeat Problem 8.15 when the line source has varying source,
q(s) = q0s/L, where s is the coordinate along the line-source.

Solution: Assume that the origin of the coordinate s is at the point A : (3, 3) and
directed to point B (see the Figure of Problem 8.15). The contribution of the linearly
varying force to the points A and B is:

QA =
1

3

µ
q0h

2

¶
, QB =

2

3

µ
q0h

2

¶
(i)

Next we use Eq. (i) of Problem 8.15 above to compute the nodal contribution.

Q1 =
QA
2
, Q2 =

QB
3
, Q3 =

QA
2
+
2QB
3

(ii)

or

Q1 =
q0h

12
, Q2 =

q0h

9
, Q3 =

q0h

12
+
2q0h

9
(iii)

Problem 8.17: Consider the following partial differential equation governing the
variable u:

c
∂u

∂t
− ∂

∂x

µ
a
∂u

∂x

¶
− ∂

∂y

µ
b
∂u

∂y

¶
− f0 = 0

where c, a, b, and f0 are constants. Assume approximation of the form

uh(x, y, t) = (1− x)yu1(t) + x(1− y)u2(t)

where u1 and u2 are nodal values of u at time t. (a) Develop the fully discretized
finite element model of the equation. (b) evaluate the element coefficient matrices
and source vector for a square element of dimension 1 unit by 1 unit (so that the
evaluation of the integrals is made easy). Note: You should not be concerned with
this non-conventional approximation of the dependent unknown but just use it as
given to answer the question.

Solution: (a) The semidiscretized finite element model is given by

nX
j=1

(Miju̇j +Kijuj) = Fi or [M ]{u̇}+ [K]{u} = {F}

where

Mij =

Z 1

0

Z 1

0
ψiψj dxdy

Kij =

Z 1

0

Z 1

0

µ
a
∂ψi
∂x

∂ψj
∂x

+
∂ψi
∂y

∂ψj
∂y

¶
dxdy

fi =

Z 1

0

Z 1

0
ψif0 dxdy
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The fully discretized model is given by

[K̂]{u}s+1 = {F̂}s,s+1

where
[K̂]s+1 = [M ] + a1[K]s+1

{F̂} = ∆t(α{F}s+1 + (1− α){F}s) + ([M ]− a2[K]s){u}s
a1 = α∆t, a2 = (1− α)∆t

(b) The interpolation functions are ψ1(x, y) = (1 − x)y, ψ2 = (1− y)x. Obviously,
the 2D element has just 2 nodes (diagonally opposite sides of the unit square)

[M ] =
c

36

∙
4 1
1 4

¸
, [K] =

a+ b

6

∙
2 −1
−1 2

¸
, {f} = f0

4

½
1
1

¾

Problem 8.18: Solve the Laplace equation

−
Ã
∂2u

∂x2
+

∂2u

∂y2

!
= 0 in Ω

on a rectangle, when u(0, y) = u(a, y) = u(x, 0) = 0 and u(x, b) = u0(x). Use the
symmetry and (a) a mesh of 2 × 2 triangular elements and (b) a mesh of 2 × 2
rectangular elements (see Fig. P8.18). Compare the finite element solution with the
exact solution

u(x, y) =
∞X
n=1

An sin
nπx

a
sinh

nπy

b

where

An =
2

a sinh(nπb/a)

Z a

0
u0(x) sin

nπx

a
dx

Take a = b = 1, and u0(x) = sin πx in the computations. For this case, the exact
solution becomes

u(x, y) =
sin πx sinhπy

sinh π
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Figure P8.18

Solution:

(a) Mesh of triangles: The only unknown nodal values are U4 and U5. Hence, we
must consider only the equations associated with nodes 4 and 5. We have

9X
J=1

KIJUJ = FI , for I = 1, 2, · · · , 9 (i)

Since only U4 and U5 are unknown, and among the knowns only U7 and U8 are
nonzero (and K57 = 0), we have

K44U4 +K45U5 = F4 − (K47U7 +K48U8 +K49U9)

K45U4 +K55U5 = F5 −K58U8 −K59U9 (ii)

The element nodes are numbered as indicated in Fig. 8.2.10(a) (i.e., node 1 is at the
right-angle, with side 1—2 being of length a = 0.5 and side 1—3 of length b = 0.25).
With this choice of local node numbering, all elements of the mesh will have the same
element matrices, namely

[Ke] =
1

2

⎡⎣ 2.5 −0.5 −2
−0.5 0.5 0
−2.0 0.0 2

⎤⎦
K44 = K

2
11 +K

5
33 +K

6
22 = 2.5, K45 = K

2
13 +K

5
31 = −2.0

K46 = 0, K47 = K
6
21 = −0.25, K48 = K5

32 +K
6
23 = 0, K49 = 0

K55 = K
1
22 +K

2
33 +K

4
11 +K

5
11 +K

7
33 +K

8
22 = 5.0
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K57 = 0, K58 = K
5
12 +K

8
21 = −0.5, K59 = K7

32 +K
8
23 = 0 (iii)

where U7 = 1.0, U8 = 0.707 and U9 = 0. Note that since K49 and K59 are zero, it
does not matter what value of U9 we use. Substituting the values of KIJ from Eq.
(iii) into Eq. (ii), we obtain

1

2

∙
5 −4
−4 10

¸½
U4
U5

¾
= −

½
K6
21U7 + (K

6
23 +K

5
32)U8

(K5
12 +K

8
21)U8

¾
or ∙

2.5 −2.0
−2.0 5.0

¸½
U4
U5

¾
=
1

2

½
0.5
0.707

¾
The solution of these equations is

U4 = 0.23025, U5 = 0.16281

The exact solution at these nodes is: u4 = 0.19927, u5 = 0.16280.

(b) Mesh of rectangles: For the rectangular element mesh we have a = 0.25, b =
0.5,α = 2.0 and β = 0.5 (see Fig. 8.2.12 for the node numbers); the element matrix
is given by

[Ke] =
1

6

⎡⎢⎢⎣
5.0 −3.5 −2.5 1.0
−3.5 5.0 1.0 −2.5
−2.5 1.0 5.0 −3.5
1.0 −2.5 −3.5 5.0

⎤⎥⎥⎦
The global coefficients KIJ can be written in terms of the element stiffnesses K

e
ij as

follows:

K44 = K
1
44 +K

3
11 =

10

6
, K45 = K

1
43 +K

3
12 = −

7

6
, K47 = K

3
14 =

1

6

K48 = K
3
13 = −

2.5

6
, K49 = 0, K55 = K

1
33 +K

2
44 +K

3
22 +K

4
11 =

20

6

K57 = K
3
24 = −

2.5

6
, K58 = K

3
23 +K

4
14 =

2

6
, K59 = K

4
13 = −

2.5

6
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The condensed equations are

1

6

∙
10 −7
−7 20

¸½
U4
U5

¾
= −1

6

½
1× 1− 2.5× 0.707
−2.5× 1 + 2× 0.707

¾
or ∙

10 −7
−7 20

¸½
U4
U5

½
=

½
0.7675
1.086

¾
The solution of these equations is

U4 = 0.1520, U5 = 0.1075

Problem 8.19: Solve Problem 8.18 when u0(x) = 1. The analytical solution is given
by

u(x, y) =
4

π

∞X
n=0

sin(2n+ 1)πx sinh(2n+ 1)πy

(2n+ 1) sinh(2n+ 1)π

Solution: The only unknown nodal values are U4 and U5. Hence, we must consider
only the two equations associated with nodes 4 and 5. We have

9X
J=1

KIJUJ = FI , for I = 1, 2, · · · , 9 (i)

Among the knowns, only U7, U8, and (possibly) U9 are nonzero. Hence, we have

K44U4 +K45U5 = F4 − (K47U7 +K48U8 +K49U9)
K45U4 +K55U5 = F5 −K58U8 −K59U9 (ii)

(a) Mesh of triangles: The element nodes are numbered as indicated in Figure P8.6
on page 387 (i.e. node 1 is at the right-angle, with side 1-2 being of length a = 0.5 and
side 1-3 of length b = 0.25). With this choice of local node numbering, all elements
of the mesh will have the same element matrices, namely

[Ke] =
1

2

⎡⎣ 2.5 −0.5 −2.0
−0.5 0.5 0.0
−2.0 0.0 2.0

⎤⎦
The global coefficients KIJ can be written in terms of the element stiffnesses K

e
ij as

follows:

K44 = K
2
11 +K

5
33 +K

6
22 = 2.5, K45 = K

2
13 +K

5
31 = −2.0

K46 = 0, K47 = K
6
21 = −0.25, K48 = K5

32 +K
6
23 = 0, K49 = 0

K55 = K
1
22 +K

2
33 +K

4
11 +K

5
11 +K

7
33 +K

8
22 = 5.0

K57 = 0, K58 = K
5
12 +K

8
21 = −0.5, K59 = K7

32 +K
8
23 = 0 (iii)
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Note that since K49 and K59 are zero, it does not matter what value of U9 we use.
Substituting the values of KIJ from Eq. (iii) into Eq. (ii), we obtain∙

2.5 −2.0
−2.0 5.0

¸½
U4
U5

¾
=

½
0.25
0.50

¾
The solution of these equations is

U4 = 0.26471, U5 = 0.20588

(b) Mesh of rectangles: For the rectangular element mesh we have a = 0.25, b =
0.5,α = 2.0 and β = 0.5; the element matrix is given by

[Ke] =
1

6

⎡⎢⎢⎣
5.0 −3.5 −2.5 1.0
−3.5 5.0 1.0 −2.5
−2.5 1.0 5.0 −3.5
1.0 −2.5 −3.5 5.0

⎤⎥⎥⎦
The global coefficients KIJ can be written in terms of the element stiffnesses K

e
ij as

follows:

K44 = K
1
44 +K

3
11 =

10

6
, K45 = K

1
43 +K

3
12 = −

7

6
, K47 = K

3
14 =

1

6

K48 = K
3
13 = −

2.5

6
, K49 = 0, K55 = K

1
33 +K

2
44 +K

3
22 +K

4
11 =

20

6

K57 = K
3
24 = −

2.5

6
, K58 = K

3
23 +K

4
14 =

2

6
, K59 = K

4
13 = −

2.5

6

The condensed equations are

1

6

∙
10 −7
−7 20

¸½
U4
U5

¾
= −1

6

½
1× 1− 2.5× 1− 0× U9
−2.5× 1 + 2× 1− 2.5× U9

¾
Taking U9 = 0.0, we have∙

1.6667 −1.1667
−1.1667 3.3333

¸½
U4
U5

¾
=

½
0.25
0.0833

¾
The solution of these equations is

U4 = 0.22185, U5 = 0.10265

If we take U9 = 1.0, we obtain∙
1.6667 −1.1667
−1.1667 3.3333

¸½
U4
U5

¾
=

½
0.25
0.50

¾
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The solution of these equations is

U4 = 0.33775, U5 = 0.26821

Problem 8.20: Solve Problem 8.18 when u0(x) = 4(x− x2).
Solution: The specified primary degrees of freedom are: U7 = u(0.5) = 1.0, U8 =
u(0.75) = 0.75 and U9 = u(1) = 0.0
(a) The condensed equations are∙

2.5 −2.0
−2.0 5.0

¸½
U4
U5

¾
=
1

2

½
0.50
0.75

¾
The solution of these equations is

U4 = 0.2353, U5 = 0.1691

(b) The condensed equations are

1

6

∙
10 −7
−7 20

¸½
U4
U5

¾
= −1

6

½
1× 1− 2.5× 0.75

−2.5× 1 + 2× 1 + 2× 0.75

¾
or ∙

10 −7
−7 20

¸½
U4
U5

¾
=

½
0.875
1.000

¾
The solution of these equations is

U4 = 0.16225, U5 = 0.10679

Problem 8.21: Solve the Laplace equation for the unit square domain and boundary
conditions given in Fig. P8.21. Use one rectangular element.

Figure P8.21
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Solution: For the one square element mesh we have

1

6

⎡⎢⎢⎣
4 −1 −2 −1
−1 4 −1 −2
−2 −1 4 −1
−1 −2 −1 4

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
Q1
Q2
Q3
Q4

⎫⎪⎪⎬⎪⎪⎭
The boundary conditions are: U1 = 1.0 and U2 = 1.0, and

Q3 =

Z 1

0
ψ3(x, 1)(2− u)dx =

Z 1

0
x [2− xU3 − (1− x)U4] dx

= 2(0.5)− (1
3
)U3 − (

1

6
)U4,

Q4 =

Z 1

0
ψ4(x, 1)(2− u)dx =

Z 1

0
(1− x) [2− xU3 − (1− x)U4] dx

= 2(0.5)− (1
6
)U3 − (

1

3
)U4

Hence we have ∙
1 0
0 1

¸½
U3
U4

¾
=

½
1.5
1.5

¾
The solution of these equations is

U3 = 1.5, U4 = 1.5

Problem 8.22: Use two triangular elements to solve the problem in Fig. P8.21. Use
the mesh obtained by joining points (1,0) and (0,1).

Solution: For the mesh of two triangular elements, we have

1

2

⎡⎢⎢⎣
2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩

Q11
Q12 +Q

2
3

Q13 +Q
2
2

Q21

⎫⎪⎪⎬⎪⎪⎭
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The boundary conditions are: U1 = 1.0, U2 = 1.0, Q3 = Q
1
3 +Q

2
2 = 1−U3/3−U4/6,

and Q4 = Q
2
1 = 1− U3/6− U4/3. Hence, we have

1

6

∙
8 −2
−2 8

¸½
U3
U4

¾
=

½
1.5
1.5

¾
The solution of these equations is

U3 = 1.5, U4 = 1.5

Problem 8.23: Consider the steady-state heat transfer (or other phenomenon) in a
square region shown in Figure P8.23. The governing equation is given by

− ∂

∂x

µ
k
∂u

∂x

¶
− ∂

∂y

µ
k
∂u

∂y

¶
= f0

The boundary conditions for the problem are:

u(0, y) = y2 , u(x, 0) = x2 , u(1, y) = 1− y , u(x, 1) = 1− x

Assuming k = 1 and f0 = 2, determine the unknown nodal value of u using the
uniform 2× 2 mesh of rectangular elements.

Figure P8.23

Solution: For the 2× 2 mesh of rectangular elements, the only unknown is U5; other
nodal values are known as: U1 = 0.0, U2 = 0.25, U3 = 1.0, U4 = 0.25, U6 = 0.5, U7 =
1.0, U8 = 0.5, U9 = 0.0. We have the equation

16

6
U5 = −

1

6
(−2× 0− 2× 0.25− 2× 1− 2× 0.25− 2× 0.5

− 2× 1− 2× 0.5) + 4
µ
f0A

4

¶
where f0 = 2 and A = 0.25; the solution of this equation is U5 = 0.625.
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Problem 8.24: Solve Prob. 8.23 using the mesh of a rectangle and two triangles, as
shown in Fig. P8.24.

Figure P8.24

Solution: For the mesh given in Figure P8.24, the only unknown nodal value is U3.
The equation is

K33U3 = F3 − (K31U1 +K32U2 +K34U4 +K35U5 +K36U6)

where U1 = 0, U2 = 0.25, U4 = 1.0, U5 = 0.5, U6 = 0.0 and

K31 = K
2
32 = 0, K32 = K

2
31 +K

1
21 = −

1

2
− 1
6

K33 = K
1
22 +K

2
33 +K

3
22 =

4

6
+
1

2
+
1

2
, K34 = K

1
24 = −

2

6

K35 = K
1
23 +K

3
21 = −

1

6
− 1
2
, K36 = K

3
23 = 0, F3 = 0 + 2

f0AT
3

+
f0AR
4

where f0 = 2, AT = 0.125 and AR = 0.25. We obtainµ
2

3
+ 1

¶
U3 = −

∙
−1
2
− 1
6

¸
(0.25)−

∙
−2
6

¸
(1.0)−

∙
−1
6
− 1
2

¸
(0.5)

+
7

12
(0.5)

=
1

6
+
2

6
+
2

6
+
7

24
=
27

24

or U3 = 0.675.

Problem 8.25: Solve the Poisson equation −∇2u = 2 in Ω, u = 0 on Γ1, ∂u/∂n = 0
on Γ2, where Ω is the first quadrant bounded by the parabola y = 1 − x2 and the
coordinate axes (see Fig. P8.25), and Γ1 and Γ2 are the boundaries shown in Fig.
P8.25.
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Figure P8.25

Solution: The coefficient matrix associated with the Laplace operator over a right-
angle triangle is given in Eq. ( 8.2.9) with ke = 1. The element coefficent matrices
and source vectors for each element are listed below. (L12 ≡ a, L13 ≡ b):

Elements 1 and 2: (a = 0.6, b = 0.64, β = a/b = 0.9375, α = b/a = 1.06667)

[K1] = [K2] =

⎡⎣ 1.0021 −0.5333 −0.4688
−0.5333 0.5333 0.0000
−0.4688 0.0000 0.4688

⎤⎦ ; {f1} = {f2} =
⎧⎨⎩
0.128
0.128
0.128

⎫⎬⎭
Element 3: (a = 0.4, b = 0.64, β = a/b = 0.625, α = b/a = 1.6)

[K3] =

⎡⎣ 1.1125 −0.800 −0.3125
−0.8000 0.800 0.0000
−0.3125 0.000 0.3125

⎤⎦ ; {f3} =
⎧⎨⎩
0.0853
0.0853
0.0853

⎫⎬⎭
Element 4: (a = 0.6, b = 0.36, β = a/b = 1.6667, α = b/a = 0.6)

[K4] =

⎡⎣ 1.1333 −0.3000 −0.8333
−0.3000 0.3000 0.0000
−0.8333 0.0000 0.8333

⎤⎦ ; {f1} =
⎧⎨⎩
0.072
0.072
0.072

⎫⎬⎭
The coefficients of the assembled coefficient matrix are (KIJ = KJI)

K11 = K
1
11, K12 = K

1
12, K13 = 0, K14 = K

1
13, K15 = 0, K16 = 0

K22 = K
1
22 +K

2
33 +K

3
11, K23 = K

3
12, K24 = K

1
23 +K

2
32

K25 = K
2
31 +K

3
13, K26 = 0, K33 = K

3
22, K34 = 0, K35 = K

3
23, K36 = 0

K44 = K
1
33 +K

2
22 +K

4
11, K45 = K

2
12 +K

4
12, K46 = K

4
13

K55 = K
2
11 +K

3
33 +K

4
22, K56 = K

4
23, K66 = K

4
33
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The coefficients of the assembled source vector are (Fi = fi +Qi)

F1 = F
1
1 , F2 = F

1
2 + F

2
3 + F

3
1 , F3 = F

3
2 , F4 = F

1
3 + F

2
2 + F

4
1

F5 = F
2
1 + F

3
3 + F

4
2 , F6 = F

4
3

For a constant source, f = fe0 , over an element, the source vector components are
fei = f

e
0A

e/3, where Ae is the area of the e−th linear triangular element. Note that
fe0 = 2 for all elements.
For the mesh of triangular elements shown in Figure P8.34, the boundary

conditions on the primary variables are: U3 = 0, U5 = 0, U6 = 0. Hence, the unknown
primary nodal variables are: U1, U2, and U4. The known secondary variables are:

Q1 = Q
1
1 = 0, Q2 = Q

1
2 +Q

2
3 +Q

3
1 = 0, Q4 = Q

1
3 +Q

2
2 +Q

4
1 = 0

The condensed equations are given by⎡⎣K11 K12 K14
K21 K22 K24
K41 K42 K44

⎤⎦⎧⎨⎩
U1
U2
U4

⎫⎬⎭ =
⎧⎨⎩

f11
f12 + f

2
3 + f

3
1

f13 + f
2
2 + f

4
1

⎫⎬⎭
or ⎡⎣ 1.0021 −0.5333 −0.4688

−0.5333 2.1146 0.0000
−0.4688 0.0000 2.1354

⎤⎦⎧⎨⎩
U1
U2
U4

⎫⎬⎭ =
⎧⎨⎩
0.1280
0.3413
0.3280

⎫⎬⎭
The solution of these equations is (obtained with the help of a computer)

U1 = 0.37413, U2 = 0.25578, U4 = 0.23573

Problem 8.26: Solve the axisymmetric field problem shown in Fig. 8.26 for the
mesh shown there. Note that the problem has symmetry about any z = constant
line. Hence, the problem is essentially one-dimensional. You are only required to
determine the element matrix and source vector for element 1 and give the known
boundary conditions on the primary and secondary variables.

Figure P8.26
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Solution: The internal heat generation is g0 = 107 (W/m3). The specified nodal
values are U5 = U10 = 100, and the secondary variable is zero at nodes 1 and 6
(because of symmetry). The solution is only a function of r, and it does not depend
on z (becuase any z = constant is a symmetry plane). In principle, both quantities,
k and g0, should be multiplied by 2π; since the factor 2π cancels on both sides of
the equation, it is not necessary to include the factor in the data. We can take, for
convenience, the length of the domain in the z-direction as the same as the element
length in the r-direction.
For the mesh of rectangular elements shown in Figure P8.26, the coefficient

matrices for this axisymmetric problem can be obtained as described in Section 8.2.6
but make note of the dependence on r: a11 = kr or â11 = k in Eq. (8.2.74b), etc. For
example, we have

[K1] =
k

12b

⎛⎜⎜⎝b2
⎡⎢⎢⎣

2 −2 −1 1
−2 2 1 −1
−1 1 2 −2
1 −1 −2 2

⎤⎥⎥⎦+ a2
⎡⎢⎢⎣

1 1 −1 −1
1 3 −3 −1
−1 −3 3 1
−1 −1 1 1

⎤⎥⎥⎦
⎞⎟⎟⎠

where k = 20, a = 0.005 and b = 1. The source vector is given by

{f1} = a2bg0
12

⎧⎪⎪⎨⎪⎪⎩
1
2
2
1

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
20.833
41.667
41.667
20.833

⎫⎪⎪⎬⎪⎪⎭
The condensed system of equations is

⎡⎢⎢⎣
3.3334 −3.3333 0.0000 . . .
−3.3333 13.3338 −9.9999 . . .
0.0000 −9.9999 26.6667 . . .
. . . . . . . . . . . .

⎤⎥⎥⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩
U1
U2
U3
...

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

20.833
125.00
250.00
3875.0
...

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
The solution is given by

U1 = 151.75, U2 = 147.58, U3 = 137.86, U4 = 122.02

The exact solution is given by

T (x) = T0 +
g0R

2
0

4k

Ã
1− r2

R20

!

and at the nodes we have

T (0) = 150.0, T2 = 146.875, T3 = 137.50, T4 = 121.875

The four-element mesh gives a very accurate solution.
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Problem 8.27: Formulate the axisymmetric field problem shown in Fig. P8.27 for
the mesh shown. You are only required to give the known boundary conditions on
the primary and secondary variables and compute the secondary variable at r = R0/2
using equilibrium and the definition. Use the element at the left of the node.

Figure P8.27

Solution: The finite element formulation of the problem is the same as discussed in
Section 8.2.6. This problem differs from the one in Problem 8.26 in that the solution
depends on the coordinate z. The problem has a symmetry about r = 0 line as
well as about the z = L/2 line. For the mesh shown in Figure P8.27, the specified
nodal values are: U1 = U2 = U3 = U6 = U9 = T0. The following values of various
parameters is suggested: L = 2R0 = 0.04m, T0 = 100◦ C, and k = 20 W/(m.◦C).
The element matrix is given in Problem 8.26 (with a = b = 0.01).
The specified nodal values of the primary variables are U1 = U2 = U3 = U6 =

U7 = U8 = U9 = 100. The only unknowns are U4 and U5. The condensed system of
equations is ∙

0.1000 −0.0333
−0.0333 0.5333

¸½
U4
U5

¾
=

½
8.333
60.000

¾
The solution is U4 = 123.40

◦ C and U5 = 120.21◦ C. The secondary variable (heat)
at node 2 is given by

(Q12)equil = K
1
21U1 +K

1
22U2 +K

1
23U5 +K

1
24U4 − f12

=
1

60
(−U1 + 5U2 − 2U5 − 2U4)− 1.667 = −3.120 W

(Q12)def = −kr
∂T

∂z

¯̄̄̄
¯
z=0,r=a

= ka

µ
U2 − U5
2

¶
= −2.021 W

Problem 8.28: A series of heating cables have been placed in a conducting medium,
as shown in Fig. P8.28. The medium has conductivities of kx = 10 W/(cm

◦C) and
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ky = 15 W/(cm◦C), the upper surface is exposed to a temperature of −5◦C, and
the lower surface is bounded by an insulating medium. Assume that each cable is a
point source of 250 W/cm. Take the convection coefficient between the medium and
the upper surface to be β = 5 W/(cm2 K). Use a 8 × 8 mesh of linear rectangular
(or triangular) elements in the computational domain (use symmetry available in
the problem), and formulate the problem (i.e., give element matrices for a typical
element, give boundary conditions on primary and secondary variables, and compute
convection boundary contributions).

Figure P8.28

Solution: Using symmetry of the problem, we can reduce the computational domain
to that shown in the figure. The heat input at the node where the cable is located
is 125 W/cm. The element matrices for rectangular or triangular elements are given
below:

[KR] = kx[S
11] + ky[S

22], KT
ij =

1

4A
(kxβiβj + kyγiγj)

The boundary conditions at the upper boundary is that of convective type, at the
right and left boundaries the heat flux is zero (because of symmetry), and at the
lower boundary the heat flux is zero because of the insulation. The contribution due
to the convective boundary condition to the element was discussed in Section 8.5.1.
For a 8 × 8 uniform mesh of linear triangular or rectangular elements, with the

origin of the coordinate system taken at the lower left corner. The sides 1-2 of the
last 8 elements (elements 57-64) are exposed to ambient temperature. There are no
specified boundary conditions on the primary variables. The source 125W (per half
the domain) is located at node 63.
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Problem 8.29: Formulate the finite element analysis information to determine the
temperature distribution in the molded asbestos insulation shown in Fig. P8.29. Use
the symmetry to identify a computational domain and give the specified boundary
conditions at the nodes of the mesh. What is the connectivity of matrix for the mesh
shown?

Figure P8.29

Solution: The computational domain is shown in Figure P8.29 (the finite element
mesh part). The heat flux is zero along the insulated boundary and line of symmetry.
Nodes 5, 10, 15, 20, and 25 have a specified temperature of 100◦F, and nodes 1, 6, 11,
16, and 21 have a specified temperature of 500◦ F. The assembled coefficient matrix
is of order 25 × 25, and the condensed coefficient matrix is of order 15 × 15. The
connectivity matrix is given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 13 2 8 7
3 5 15 4 10 9
1 13 11 6 7 12
3 15 13 8 9 14
11 13 23 12 18 17
13 15 25 14 20 19
11 23 21 17 22 16
13 25 23 19 24 18

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Problem 8.30: Consider steady-state heat conduction in a square region of side
2a. Assume that the medium has conductivity of k (in W/(m◦C) and uniform heat
(energy) generation of f0 (in W/m

3). For the boundary conditions and mesh shown
in Fig. P8.30, write the finite element algebraic equations for nodes 1, 3, and 7.

Solution: The algebraic equations associated with nodes 1, 3, and 7 are:

K11T1 +K12T2 +K14T4 +K15T5 = F1

K32T2 +K33T3 +K35T5 +K36T6 = F3

K74T4 +K75T5 +K77T7 +K78T8 = F8
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where T3 = T6 = T0 and

K11 = K
1
11, K12 = K

1
12, K14 = K

1
14, K15 = K

1
13, F1 =

g0a
2

4
+
q0a

2

K32 = K
2
21, K33 = K

2
22, K35 = K

2
24, K36 = K

2
23, F3 =

g0a
2

4
+Q22

K74 = K
3
41, K75 = K

3
42, K77 = K

3
44 +H

3
44, K78 = K

3
43 +H

3
43

F7 =
g0a

2

4
+
q0a

2
+ P 34

Figure P8.30

Note that the equation associated with node 3 will be used to compute Q22. The
coefficients He

ij and P
e
i are defined in Eqs. (8.5.10a, b):

He
44 =

aβ

3
, He

43 =
aβ

6
, P e4 =

aT∞β

2

We have

K11 =
4

6
k, K12 = −

k

6
, K13 = −

2

6
k, K14 = −

k

6
, K22 =

4

6
k

K23 = −
k

6
, K24 = −

2

6
k, K33 =

4

6
k, K34 = −

k

6
, K44 =

4

6
k

For a = 0.01m, k = 30 W/(m·◦C), β = 60 W/(m2·◦C), T∞ = 0.0, T0 = 100◦C,
q0 = 2× 105 W/m2, and g0 = 107 W/m3, the nodal values are:

T1 = 297.06, T2 = 214.58, T4 = 295.98, T5 = 213.83

T7 = 292.15, T8 = 210.88

Problem 8.31: For the convection heat transfer problem shown in Fig. P8.31, write
the four finite element equations for the unknown temperatures. Assume that the
thermal conductivity of the material is k = 5 W/(m◦C), the convection heat transfer
coefficient on the left surface is β = 28 W/(m2◦C), and the internal heat generation

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.



y

Convection 

3
1

1
2

3 4

x

2a

2a

∞T,β
Prescribed 
Temperature

Insulated 

21

4 5 6

7 8 9

m 0.15   C, 10

C,40C,0

C)W/(m28C),W/(m5

21

963

2

===

====

==

∞

aTT

TTTT

k

o

oo

oo β

Prescribed Temperature

SOLUTIONS MANUAL 271

is zero. Compute the heats at nodes 2, 4 and 9 using (a) element equations (i.e.,
equilibrium), and (b) definition (use the temperature field of elements 1 and 2).

Figure P8.31

Solution: There are four algebraic equations associated with nodal unknowns
T4, T5, T7 and T8:

(K1
44 +K

4
11 +H

1
44 +H

4
11)T4 + (K

1
43 +K

4
12)T5 + (K

4
14 +H

4
14)T7 +K

4
13T8

= −(K1
41 +H

1
41)T1 −K1

42T2 (i)

(K1
34 +K

4
21)T4 + (K

1
33 +K

2
44 +K

3
11 +K

4
22)T5 +K

4
24T7 + (K

4
23 +K

3
14)T8

= −K3
13T9 −K1

31T1 − (K1
32 +K

2
41)T2 −K2

42T3 − (K2
43 +K

3
12)T6 (ii)

(K4
41 +H

4
41)T4 +K

4
42T5 + (K

4
44 +H

4
44)T7 +K

4
43T8 = 0 (iii)

K4
31T4 + (K

4
32 +K

3
41)T5 +K

4
34T7 + (K

4
33 +K

3
44)T8

= −K3
42T6 −K3

43T9 (iv)

The heat at node 2 is given from the assembled equation associated with node 2:

Q2 = K
1
21T1 + (K

1
22 +K

2
11)T2 +K

2
12T3 +K

1
24T4 + (K

1
23 +K

2
14)T5 +K

2
13T6 −

g0a
2

2

Note that g0 = 0 in this problem. By definition,

Q2 = Q
1
2 +Q

2
1 = k

Z a

0
ψ12

∂T

∂y

(1)

dx+ k

Z a

0
ψ21

∂T

∂y

(2)

dx

Similar equations can be written for heats at nodes 4 and 9.

Problem 8.32: Write the finite element equations for the unknown temperatures of
the problem shown in Fig. P8.32.
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Figure P8.32

Solution: There are four algebraic equations associated with nodal unknowns (T s
used in place of Us) T6, T7, T10 and T11:

(K1
33 +K

2
44 +K

4
22 +K

5
11)T6 + (K

2
43 +K

5
12)T7 + (K

4
23 +K

5
14)T10 +K

5
13T11

= −K1
31T1 − (K1

32 +K
2
41)T2 −K2

42T3 − (K1
34 +K

4
21)T5 −K4

24T9

Similar equations can be written for nodes 7, 10 and 11.

Problem 8.33: Write the finite element equations for the heats at nodes 1 and 13 of
Problem 8.32. The answer should be in terms of the nodal temperatures T1, T2,. . . ,
T16.

Solution: We have

Q11 = (K
1
11T1 +K

1
12T2 +K

1
13T6 +K

1
14T5)

Q74 = (K
7
41T9 +K

7
42T10 +K

7
43T14)

Problem 8.34: Write the finite element equations associated with nodes 13, 16, and
19 for the problem shown in Fig. P8.34.

Figure P8.34
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Solution: This is a straight forward problem. Here equation for node 13 is given.
The equation for node 13 will have contributions from elements 6, 7, 10 and 11 (and
nodes 7, 8, 9, 12, 13, 14, 17, 18, and 19):

K6
31U7 + (K

6
32 +K

7
41)U8 +K

7
42U9 + (K

6
34 +K

10
21)U12

+ (K6
33 +K

7
44 +K

10
22 +K

11
11)U13 + (K

7
43 +K

11
12 )U14

+K10
24U17 + (K

10
23 +K

11
14)U18 +K

11
13U19 = 0

Similarly, the equation for node 16 will have contributions from elements 9 and 13
(nodes 11, 12, 16, 17, 21 and 22), and temperature at nodes 21 and 22 are known.
The equation for node 19 will have contributions from elements 11, 12, 15 and 16
(nodes 13, 14, 15, 18, 19, 20, 23, 24 and 25), and temperatures at nodes 15, 20, 23,
24, and 25 are known.

Problem 8.35: The fin shown in Fig. P8.35 has its base maintained at 300◦C and
exposed to convection on its remaining boundary. Write the finite element equations
at nodes 7 and 10.

Figure P8.35

Solution: The equations for node 7 is given by

(K1
32 +K

2
41)U2 +K

2
42U3 + (K

2
43 +K

6
12)U8 + (K

5
23 +K

6
14)U12 +K

6
13U13

= −K1
31U1 − (K1

34 +K
5
21)U6 −K5

24U11

where U1 = U6 = U11 = T0. The equation for node 10 involves convection terms. We
have

K4
31U4 + (K

4
32 +H

4
32)U5 + (K

4
34 +K

8
21)U9 + (K

4
33 +K

8
22 +H

4
33 +H

8
22)U10

+K8
24U14 + (K

8
23 +H

8
23)U15 = P

4
3 + P

8
2

The element coefficients Ke
ij , H

e
ij and P

e
i are given by Eqs. (8.2.54), (8.5.10a) and

(8.5.10b), respectively. For example, He
32 from Eq. (8.5.10a) is β

e
23h

e
23/6 whereas H

e
33

is 2βe23h
e
32/6. Note that H

e
33 contribution comes, in the present problem, from the

side connecting local nodes 2 and 3.
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Problem 8.36: Compute the heat loss at nodes 10 and 13 of Problem 8.35.

Solution: The heats at nodes 10 and 13 can be computed from the definition:

Q10 = k

Z 1

0
ψ43(y)

∂T 4h
∂x

dy + k

Z 1

0
ψ82(y)

∂T 8h
∂x

dy

Q13 = k

Z 2

0
ψ63(x)

∂T 6h
∂y

dx+ k

Z 2

0
ψ74(x)

∂T 7h
∂y

dx

where T eh is replaced by the finite element interpolation T
e
h =

P
T ei ψ

e
i (x, y).

The formulative effort for Problems 37—42 involves mesh generation. The
boundary conditions are very apparent from the problem data. For computer solution
of these problems, see Chapter 13 solutions. Here we only make some comments on
each problem.

Problem 8.37: Consider the problem of the flow of groundwater beneath a coffer
dam. Formulate the problem using the velocity potential for finite element analysis.
The geometry and boundary conditions are shown in Fig. P8.37.

Figure P8.37

Solution: On boundary segments AB, BC, EF and AG, natural boundary conditions
are specified to be zero. On GF, EC and ED boundary conditions on the primary
variable φ are specified.

Problem 8.38: Formulate the groundwater flow problem of the domain shown in
Fig. P8.38 for finite element analysis. The pump is located at (x, y) = (550, 400) m.
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Figure P8.38

Solution: This problem is similar to the one in Example 8.5.4. Primary variable is
specified at nodes on x = 1050 m line. The specified nonzero secondary variables are
at the nodes along the river and at the pump. The values can be determined once
the mesh is selected.

Problem 8.39: Repeat Prob. 8.38 for the domain shown in Fig. P8.39.

Figure P8.39

Solution: The primary variable is specified at nodes on the top boundary and also at
one node on the left boundary. Non-zero specified secondary variables are at nodes
along the river.

Problem 8.40: Consider the steady confined flow through the foundation soil of
a dam (see Fig. P8.40). Assuming that the soil is isotropic (kx = ky), formulate
the problem for finite element analysis (identify the specified primary and secondary
variables and their contribution to the nodes). In particular, write the finite element
equations at nodes 8 and 11. Write the finite element equations for the horizontal
velocity component in 5th and 10th elements.
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Figure P8.40

Solution: For this problem, the primary variable is specified at nodes 1, 20, 39, 58
and 77-81 (φc) and 19, 38, 57, 76 and 91-95 (φ1). There are no specified non-zero
secondary variables.

Problem 8.41: Formulate the problem of the flow about an elliptical cylinder using
the (a) stream function and (b) velocity potential. The geometry and boundary
conditions are shown in Fig. P8.41.

Figure P8.41
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Solution: This problem is similar to that in Example 8.5.5.

(a) Stream function formulation On the left boundary, the primary variable (ψ) is
specified to be ψ = yu0 on the left boundary, ψ = 2u0 on the top wall, and ψ = 0 on
the bottom wall as well as on the elliptical boundary.

(b) Velocity potential formulation On the left boundary, the primary variable (φ) is

specified to be φ = 0 on the right boundary. The secondary variable ∂φ
∂n is specified to

be zero at the top and bottom walls as well as on the elliptical boundary; it is equal
to −u0 on the left boundary.

Problem 8.42: Repeat Problem 8.41 for the domain shown in Fig. P8.42.

Figure P8.42

Solution: By symmetry, only one half of the domain needs to be modeled.

(a) Stream function formulation On the left boundary, the primary variable (ψ) is
specified to be ψ = yu0 on the left boundary, ψ = 4u0 on the top wall, and ψ = 0 on
the bottom wall as well as on the rectangular boundary.

(b) Velocity potential formulation On the left boundary, the primary variable (φ) is

specified to be φ = 0 on the right boundary. The secondary variable ∂φ
∂n is specified

to be zero at the top and bottom walls as well as on the rectangular boundary; it is
equal to −u0 on the left boundary.

Problem 8.43: The Prandtl theory of torsion of a cylindrical member leads to

−∇2u = 2Gθ in Ω; u = 0 on Γ

where Ω is the cross section of the cylindrical member being twisted, Γ is the boundary
of Ω, G is the shear modulus of the material of the member, θ is the angle of twist,
and u is the stress function. Solve the equation for the case in which Ω is a circular
section (see Fig. P8.43) using the mesh of linear triangular elements. Compare the
finite-element solution with the exact solution (valid for elliptical sections with axes
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a and b):

u =
Gθa2b2

a2 + b2

Ã
1− x

2

a2
− y

2

b2

!
Use a = 1, b = 1, and f0 = 2Gθ = 10.

Figure P8.43

Solution: For the mesh shown in a quadrant, the specified degrees of freedom are:
U3 = U5 = U6 = 0, and the values at nodes 1, 2 and 4 are to be determined. The
condensed equations are

K11U1 +K12U2 +K14U4 = F1

K21U1 +K22U2 +K24U4 = F2

K41U1 +K42U2 +K44U4 = F4

where
K11 = K

1
11, K12 = K

1
12, K14 = K

1
13, K22 = K

1
22 +K

2
11 +K

3
11

K24 = K
1
23 +K

3
13, K44 = K

1
33 +K

3
33 +K

4
11

F1 =
f0A1
3
, F2 =

f0
3
(A1 +A2 +A3), F4 =

f0
3
(A1 +A3 +A4)

and Ai is the area of the ith element and f0 = 2Gθ = 10. The condensed equations
are given by ⎡⎣ 0.4142 −0.2071 −0.2071

−0.2071 1.8969 −1.1141
−0.2071 −1.1141 1.8969

⎤⎦⎧⎨⎩
U1
U2
U4

⎫⎬⎭ =
⎧⎨⎩
0.2946
0.9567
0.9567

⎫⎬⎭
The solution of these equations is: U1 = 2.6292, U2 = 1.9179, U4 = 1.9179. The
exact solution at these is given by u1 = 2.5, u2 = 1.875, u4 = 1.875.

Problem 8.44: Repeat Problem 8.43 for an elliptical section member (see Fig.
P8.44). Use a = 1 and b = 1.5.
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Figure P8.44

Solution: Use the mesh shown in Fig. P8.44 and note that the nodes 6, 7, and 8 lie
on the parabola; the specified degrees of freedom are: U3 = U6 = U7 = U8 = 0, and
the values at nodes 1, 2, 4, and 5 are to be determined. The condensed equations are

K11U1 +K12U2 +K14U4 +K15U5 = F1

K21U1 +K22U2 +K25U5 = F2

K41U1 +K44U4 +K45U5 = F4

K51U1 +K52U2 +K54U4 +K55U5 = F5

where

K11 = K
1
11 +K

2
11, K12 = K

1
12, K14 = K

2
13, K15 = K

1
13 +K

2
12

K22 = K
1
22 +K

3
11 +K

4
11, K44 = K

2
33 +K

5
11 +K

6
11, K45 = K

2
32 +K

5
12

K55 = K
1
33 +K

2
22 +K

4
33 +K

5
22 +K

7
11, F1 =

f0
3
(A1 +A2)

F2 =
f0
3
(A1 +A3 +A4), F4 =

f0
3
(A2 +A5 +A6)

F5 =
f0
3
(A1 +A2 +A4 +A5 +A7)

and Ai is the area of the ith element and f0 = 2Gθ = 10. The solution of the
condensed equations yield U1 = 3.6389, U2 = 2.5448, U4 = 3.0663, U5 = 2.0565. The
exact solution at these nodes is u1 = 3.4615, u2 = 2.5961, u4 = 3.0769, u5 = 2.2115.

Problem 8.45: Repeat Prob. 8.43 for the case in which Ω is an equilateral triangle
(see Fig. P8.45). The exact solution is given by

u = −Gθ
∙
1

2

³
x2 + y2

´
− 1
2
a
³
x3 − 3xy2

´
− 2

27
a2
¸
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Take a = 1 and f0 = 2Gθ = 10. Give the finite element equation for node 5.

Figure P8.45

Solution: The coordinate y can be computed from the equation

0 =
1

2

³
x2 + y2

´
− 1
2
a
³
x3 − 3xy2

´
− 2

27
a2

for any given x. The known primary degrees of freedom are

U1 = U2 = U3 = U4 = U6 = U10 = U11 = 0

The condensed system of equations is 5×5 for the unknowns U5, U7, U8 and U9. The
finite element equation for node is

K55U5 +K57U7 +K58U8 = F5

where

K55 = K
2
33 +K

3
22 +K

4
11 +K

5
33 +K

6
11 +K

7
33, K57 = K

4
12 +K

6
13

K58 = K
6
12 +K

7
32, F5 =

f0
3
(A2 +A3 +A4 +A5 +A6 +A7)

Problem 8.46: Consider the torsion of a hollow square cross section member. The
stress function Ψ is required to satisfy the Poisson equation (8.5.60) and the following
boundary conditions:

Ψ = 0 on the outer boundary; Ψ = 2r2 on the inner boundary

where r is the ratio of the outside dimension to the inside dimension, r = 6a/2a.
Formulate the problem for finite element analysis using the mesh shown in Fig. P8.46.
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Figure P8.46

Solution: The ratio of outside to inside dimensions is 3. Hence, Ψ = 18. The value
of Ψ at nodes 3, 6, 8 and 9 is zero, and at nodes 1 and 4 it is 18. Thus the unknown
values are at nodes 2, 5, and 7. We have

K22U2 +K25U5 = −K21U1 −K24U4
K52U2 +K55U5 +K57U7 = −K51U1 −K54U4
K75U5 +K77U7 = −K74U4

where
K21 = K

R
21, K22 = K

R
11 +K

R
22, K24 = K

R
24, K25 = K

R
23 +K

R
14

K51 = K
R
31, K54 = K

R
34 +K

T
21, K55 = K

R
11 +K

R
33 +K

R
44 +K

T
22, K57 = K

R
14 +K

T
23

and the coefficient matrices associated with rectangular (R) and triangular (T)
elements are

[KT ] =
1

2

⎡⎣ 1 −1 0
−1 2 −1
0 −1 1

⎤⎦ , [KR] =
1

6

⎡⎢⎢⎣
4 −1 −2 −1
−1 4 −1 −2
−2 −1 4 −1
−1 −2 −1 4

⎤⎥⎥⎦
are the element matrices associated with the triangular element (right-angle is
numbered as node 2) and rectangular element. The source coefficients for these
elements are (a = b):

fTi =
2ab

6
, fRi =

2ab

4

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.



8 cm

10 cm

5cm

x

y

0=u

0=u

0=u

xxu )10( −=

1 2 3

4 5 6

7 8 9

1 2

3 4

•

•

•

•

• •

•

••

y

x
a

a

a

a a
1 2 3

4 5 6

7 8

9

•

•

•

•

•

• •

• •1

1

282 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

Figure P8.46(b)

Solution: For the case of the mesh of triangles, all element matrices are the same and
equal to [KT ] of Problem 8.46. The finite element equations associated with nodes
2, 5 and 7 are

K22U2 +K25U5 = −K21U1
K52U2 +K55U5 +K57U7 = −K51U1 −K54U4
K75U5 +K77U7 = −K74U4

with
K21 = K

T
21, K22 = K

T
22 +K

T
11 +K

T
33, K25 = K

T
23 +K

T
32

K51 = K
T
13 +K

T
31, K54 = K

T
12 +K

T
21

K55 = 2
³
KT
11 +K

T
33 +K

T
22

´
, K57 = K

T
23 +K

T
32

The condensed equations are given by⎡⎣ 2.0 −1.0 0.0
−1.0 4.0 −1.0
0.0 −1.0 0.5

⎤⎦⎧⎨⎩
U2
U5
U7

⎫⎬⎭ =
⎧⎨⎩
1.0
0.0
18.0

⎫⎬⎭+
⎧⎨⎩
1.0
2.0
1.0

⎫⎬⎭
The solution of these equations is: U2 = 9.25, U5 = 8.5, U7 = 4.75.

Problem 8.48: The membrane shown in Fig. P8.48 is subjected to uniformly
distributed load of intensity f0 = 1 N/m2. Write the condensed equations for the
unknown displacements.

Figure P8.48
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Solution: For 2 × 2 mesh of linear rectangular elements, the only unknown nodal
values are U5 and U6. All elements are identical, with the same element cofficient
matrix. The equations governing the unknown nodal values are:

K55U5 +K56U6 = 4
f0ab

4
− (K58U8 +K59U9)

K56U5 +K66U6 = 2
f0ab

4
− (K68U8 +K69U9)

where U8 = 0.1875 m and U9 = 0.25 m. Using the element matrix in Eq. (8.2.54)
(a = 0.025 m and b = 0.04 m), we can write the above equations as∙

2.9667 −0.8583
−0.8583 1.4833

¸½
U5
U6

¾
= 10−2

½
0.10
0.05

¾
+

½
0.07083
0.05495

¾
=

½
0.07183
0.05545

¾
The solution of these equations is U5 = 4.2072 cm and U6 = 6.1726 cm.

Problem 8.49: The circular membrane shown in Fig. P8.49 is subjected to uniformly
distributed load of intensity f0 (in N/m

2). Write the condensed equations for the
unknown displacements.

Figure P8.49

Solution: This problem is similar to that solved in Problem 8.43. For the mesh shown
in a quadrant, the specified degrees of freedom are: U3 = U5 = U6 = 0, and the values
at nodes 1, 2 and 4 are to be determined. The condensed equations are

K11U1 +K12U2 +K14U4 = F1

K21U1 +K22U2 +K24U4 = F2

K41U1 +K42U2 +K44U4 = F4

where
K11 = K

1
11, K12 = K

1
12, K14 = K

1
13, K22 = K

1
22 +K

2
11 +K

3
11

K24 = K
1
23 +K

3
13, K44 = K

1
33 +K

3
33 +K

4
11

F1 =
f0A1
3
, F2 =

f0
3
(A1 +A2 +A3), F4 =

f0
3
(A1 +A3 +A4)
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and Ai is the area of the ith element.
The condensed equations are given by⎡⎣ 0.4142 −0.2071 −0.2071

−0.2071 1.8968 −1.1141
−0.2071 −1.1141 1.8969

⎤⎦⎧⎨⎩
U1
U2
U4

⎫⎬⎭ = 10−3f0
⎧⎨⎩
0.2946
0.9567
0.9567

⎫⎬⎭
The solution of these equations is: U1 = 0.2629 × 10−2f0 m, U2 = 0.1918 × 10−2f0
m, U4 = U2.

Problem 8.50: Determine the critical time step for the transient analysis (with
α ≤ 1

2) of the problem

∂u

∂t
−∇2u = 1 in Ω; u = 0 in Ω at t = 0

by determining the maximum eigenvalue of the problem

−∇2u = λu in Ω; u = 0 on Γ

The domain is a square of 1 unit. Use (a) one triangular element in the octant,
(b) 4 linear elements in the octanta, and (c) a 2 × 2 mesh of linear rectangular
elements in a quadrant (see Fig. P8.50). Determine the critical time step for the
forward difference scheme.

Figure P8.50

(a) The finite element equations of a right-angle triangular element of sides a and b
for the given equation are (a = b = 0.5; see Example 8.6.1)

1

96

⎡⎣ 2 1 1
1 2 1
1 1 2

⎤⎦⎧⎨⎩
U̇1
U̇2
U̇3

⎫⎬⎭+ 12
⎡⎣ 1 −1 0
−1 2 −1
0 −1 1

⎤⎦⎧⎨⎩
U1
U2
U3

⎫⎬⎭ =
⎧⎨⎩
Q1
Q2
Q3

⎫⎬⎭
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The boundary conditions are: U2 = U3 = 0 and Q1 = 0. The eigenvlue problem
associated with this equation is

Ã
− λ

96

⎡⎣ 2 1 1
1 2 1
1 1 2

⎤⎦+ 1
2

⎡⎣ 1 −1 0
−1 2 −1
0 −1 1

⎤⎦!⎧⎨⎩
U1
0
0

⎫⎬⎭ =
⎧⎨⎩
0
Q2
Q3

⎫⎬⎭
The condensed equation −λ/48 + 1/2 = 0 gives λ = 24. The critical time step is
∆tcr = 2/λ = 0.0833.

(b) Using the mesh of linear triangular elements shown in Fig. P8.50(b), we obtain
the following condensed equations (a = b = 0.25)

Ã
− λ

384

⎡⎣ 2 1 1
1 6 2
1 2 6

⎤⎦+ 1
2

⎡⎣ 1 −1 0
−1 4 −2
0 −2 4

⎤⎦!⎧⎨⎩
U1
U2
U3

⎫⎬⎭ =
⎧⎨⎩
0
0
0

⎫⎬⎭
The roots of the resulting characterstic polynomial are (obtained using an eigenvalue
solver): λ1 = 21.6582, λ2 = 152.793, λ3 = 305.549. Hence, the critical time
step for conditionally stable scheme like the forward difference scheme (α = 0.0)
is ∆tcr =

2
λmax

= 6.5456× 10−3.
(c) Using the 2× 2 mesh of linear rectangular elements (each element is a square of
side a = 0.25) shown in Fig. P8.50(c), we obtain the following assembled equations

Ã
− λ

576

⎡⎢⎢⎣
4 2 2 1
2 8 1 2
2 1 8 2
1 2 2 16

⎤⎥⎥⎦+ 16
⎡⎢⎢⎣

4 −1 −1 −2
−1 8 2 −1
−1 2 8 −1
−2 −1 −1 16

⎤⎥⎥⎦
!⎧⎪⎪⎨⎪⎪⎩

U1
U2
U4
U5

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
0
0
0
0

⎫⎪⎪⎬⎪⎪⎭
The roots of the resulting characterstic polynomial are: λ1 = 38.607, λ2 = 82.286,
λ3 = 126.279, and λ4 = 236.815. Hence, the critical time step for the forward
difference scheme is ∆tcr =

2
λmax

= 8.445× 10−3.

Problem 8.51: Write the condensed equations for the transient problem in Prob.
8.50 for the α-family of approximation. Use the mesh shown in Fig. P8.50(b).

Solution: Using the mesh shown in Figure 8.12b of page 325, we obtain the following
condensed equations for the time-dependent case:

1

384

⎡⎣ 2 1 1
1 6 2
1 2 6

⎤⎦⎧⎨⎩
U̇1
U̇2
U̇4

⎫⎬⎭+ 12
⎡⎣ 1 −1 0
−1 4 −2
0 −2 4

⎤⎦⎧⎨⎩
U1
U2
U4

⎫⎬⎭ =
⎧⎨⎩
0.041667
0.125
0.125

⎫⎬⎭
The α-family of approximation results in Eqs. (8.6.10a, b), where [M ] and [K] are
obvious from the above equation.
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Problem 8.52: Write the condensed equations for the time-dependent analysis of
the circular membrane in Problem 8.49.

Solution: For the mesh given in Fig. P8.60, the condensed equations are given by (the
mass matrix coefficients are to be computed for each element to obtain the condensed
mass matrix)

10−4

⎡⎣ 1.473 0.736 0.736
0.736 4.784 1.595
0.736 1.595 4.784

⎤⎦⎧⎨⎩
Ü1
Ü2
Ü4

⎫⎬⎭+
⎡⎣ 0.4142 −0.2071 −0.2071
−0.2071 1.8969 −1.1141
−0.2071 −1.1141 1.8969

⎤⎦⎧⎨⎩
U1
U2
U4

⎫⎬⎭
=

⎧⎨⎩
0.02946
0.09567
0.09567

⎫⎬⎭
The Newmark family of approximation results in Eqs. (8.6.20a, b), where [M ] and
[K] are clear from the above equation.

Problem 8.53: Determine the fundamental natural frequency of the rectangular
membrane in Problem 8.48.

Solution: For 2×2 mesh of linear rectangular elements shown in Fig. P8.48, the only
unknown nodal values are U5 and U6. All other nodal values as well as the loads are
zero for a natural vibration analysis (and the problem becomes one in Example 8.6.3)
The eigenvalue problem for natural frequencies becomes:µ

−λ
∙
M55 M56

M65 M66

¸
+

∙
K55 K56
K65 K66

¸¶½
U5
U6

¾
=

½
0
0

¾
where λ = ω2, square of the natural frequency, ω. Numerical form of the above
equation isµ

−10−3λ
∙
0.4444 0.1111
0.1111 0.4444

¸
+

∙
2.9667 −0.8583
−0.8583 1.4833

¸¶½
U5
U6

¾
=

½
0
0

¾
The eigenvalues (square of the frequencies) are λ1 = 2, 913.66, and λ2 = 14, 550.6.
Thus, the fundamental frequency is ω1 = 53.978. The exact value from Example 8.6.3
is 50.290.

Problem 8.54: Determine the critical time step based on the forward difference
scheme for the time-dependent analysis of the circular membrane in Problem 8.49.

Solution: Using the results of Problem 8.52, we obtain the following eigenvalue
problem:⎛⎝−10−4λ

⎡⎣ 1.473 0.736 0.736
0.736 4.784 1.595
0.736 1.595 4.784

⎤⎦+
⎡⎣ 0.4142 −0.2071 −0.2071
−0.2071 1.8969 −1.1141
−0.2071 −1.1141 1.8969

⎤⎦⎞⎠⎧⎨⎩
U1
U2
U4

⎫⎬⎭
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=

⎧⎨⎩
0
0
0

⎫⎬⎭
The eigenvalues (square of the frequencies) are λ1 = 611.90, λ2 = 4, 688.72 and
λ3 = 9, 441.68. Hence, the critical time step for the forward difference scheme is
∆tcr =

2
λmax

= 0.212× 10−3.

Problem 8.55: (Central difference method) Consider the following matrix differential
equation in time:

[M ]{Ü}+ [C]{U̇}+ [K]{U} = {F}

where the superposed dot indicates differentiation with respect to time. Assume

{Ü}n =
1

(∆t)2
({U}n−1 − 2{U}n + {U}n+1)

{U̇}n =
1

2(∆t)
({U}n+1 − {U}n−1)

and derive the algebraic equations for the solution of {U}n+1 in the form

[A]{U}n+1 = {F}n − [B]{U}n − [D]{U}n−1

Define [A], [B], and [D] in terms of [M ], [C], and [K].

Solution: Premultiply the first equation (of the approximation) by [M ]n and the
second one by [C]n, and add the resulting equations. Then substitute for {Ü}n and
{U̇}n from the given equation of motion. Collecting the coefficients, the derived
equation is obtained with,

[A] =

µ
2

∆t2
[M ]n +

1

2∆t
[C]n

¶
[B] =

µ
[K]n −

2

∆t2
[M ]n

¶
[D] =

µ
1

∆t2
[M ]n −

1

2∆t
[C]n

¶

Problem 8.56: Consider the first-order differential equation in time

a
du

dt
+ bu = f

Using linear approximation, u(t) = u1ψ1(t)+u2ψ2(t), ψ1 = 1− t/∆t, and ψ2 = t/∆t,
derive the associated algebraic equation and compare with that obtained using the
α-family of approximation.
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Solution: The weighted-integral statement is given by

0 =

Z ∆t

0
w

µ
a
du

dt
+ bu− f

¶
dt

Substituting the interpolation for u = unψn + un+1ψn+1 and taking w = ψ1 = ψn
and w = ψ2 = ψn+1, we obtain the equations for the time interval [tn, tn+1]:Ã

a

2

∙−1 1
−1 1

¸
+
b∆t

6

∙
2 1
1 2

¸!½
un
un+1

¾
=
∆t

6

∙
2 1
1 2

¸½
fn
fn+1

¾

where f is also interpolated as f = fnψn + fn+1ψn+1. Now we assume that the
solution at time tn is known and we wish to determine that at tn+1. Thus we solve
the second of the two equations for un+1 in terms of un, tn, and tn+1:µ

a+
2

3
b∆t

¶
un+1 =

µ
a− 1

3
b∆t

¶
un =

∆t

3
(fn + 2fn+1) (i)

Next let us apply the α-family of approximation to the equation. We obtain

(a+ α∆tb)un+1 = [a− (1− α)∆tb]un +∆t [(1− α)fn + αfn+1] (ii)

Comparing Eq. (i) with Eq. (ii), we note that they are the same for α = 2/3. Thus,
the Galerkin method is a subset of the α-family of approximation.

Problem 8.57: (Space-time element) Consider the differential equation

c
∂u

∂t
− ∂

∂x

µ
a
∂u

∂x

¶
= f for 0 < x < L, 0 ≤ t ≤ T

with

u(0, t) = u(L, t) = 0 for 0 ≤ t ≤ T u(x, 0) = u0(x) for 0 < x < L

where c = c(x), a = a(x), f = f(x, t), and u0 are given functions. Consider the
rectangular domain defined by

Ω = {(x, t) : 0 < x < L, 0 ≤ t ≤ T}

A finite-element discretization of Ω by rectangles is a time-space rectangular element
(with y replaced by t). Give a finite-element formulation of the equation over a
time-space element, and discuss the mathematical/practical limitations of such a
formulation. Compute the element matrices for a linear element.
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Solution: The finite element model over a rectangular element is given by [K]{u} =
{F}, where

Kij =

Z ∆t

0

Z xb

xa

µ
c ψi

∂ψj
∂t

+ a
∂ψi
∂x

∂ψj
∂x

¶
dxdt (i)

Fi =

Z ∆t

0

µ
a
∂u

∂x
ψi

¶¯̄̄̄x=xb
x=xa

dt+

Z xb

xa

Z ∆t

0
f ψi dxdt (ii)

For the case in which a and c are constant, and ψi are the linear interpolation functions
of a (time-space) rectangular element,

ψ1 =

µ
1− x

∆x

¶µ
1− t

∆t

¶
, ψ2 =

x

∆x

µ
1− t

∆t

¶
ψ3 =

x

∆x

t

∆t
, ψ4 =

µ
1− x

∆x

¶
t

∆t
(iii)

the element matrix can be readily evaluated. Indeed, we have

[Ke] = a[S11] + c[S02] (iv)

where [S11] is given in Eq. (8.2.52) and [S02] is given in the soolution to Problem
8.10. We have

[Ke] = a
∆t

6∆x

⎡⎢⎢⎣
2 −2 −1 1
−2 2 1 −1
−1 1 2 −2
1 −1 −2 2

⎤⎥⎥⎦+ c∆x12
⎡⎢⎢⎣
−2 −1 1 2
−1 −2 2 1
−1 −2 2 1
−2 −1 1 2

⎤⎥⎥⎦
or

[K] =
∆x

12

⎡⎢⎢⎣
−2c+ 4ar −c− 4ar c− 2ar 2c+ 2ar
−c− 4ar −2c+ 4ar 2c+ 2ar c− 2ar
−c− 2ar −2c+ 2ar 2c+ 4ar c− 4ar
−2c+ 2ar −c− 2ar c− 4ar 2c+ 4ar

⎤⎥⎥⎦ (v)

where r = ∆t/(∆x)2.

Problem 8.58: (Space-time finite element) Consider the time-dependent problem

∂2u

∂x2
= c

∂u

∂t
, for 0 < x < 1, t > 0

u(0, t) = 0,
∂u

∂x
(1, t) = 1, u(x, 0) = x

Use linear rectangular elements in the (x, t)-plane to model the problem. Note that
the finite-element model is given by [Ke]{ue} = {Qe}, where

Ke
ij =

Z ∆t

0

Z xb

xa

Ã
∂ψei
∂x

∂ψej
∂x

+ cψi
∂ψj
∂t

!
dx dt
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Qe1 =

Ã
−
Z ∆t

0

∂u

∂x
dt

! ¯̄̄̄
x=xa

, Qe2 =

ÃZ ∆t

0

∂u

∂x
dt

! ¯̄̄̄
x=xb

Solution: For one space-time element mesh, we have the equations

∆x

12

⎡⎢⎢⎣
−2c+ 4r −c− 4r c− 2r 2c+ 2r
−c− 4r −2c+ 4r 2c+ 2r c− 2r
−c− 2r −2c+ 2r 2c+ 4r c− 4r
−2c+ 2r −c− 2r c− 4r 2c+ 4r

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U1
U2
U3
U4

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
Q1
Q2
Q3
Q4

⎫⎪⎪⎬⎪⎪⎭ (1)

The “boundary conditions” are: U1 = 0, U2 = ∆x, U4 = 0, Q3 = ∆t. Note that we
have no condition given at t = ∆t. This amounts to assuming that ∂u/∂t = 0. The
value at the node 3 (i.e., U3 = u(∆x,∆t)) can be determined easily from Eq. (1),

∆x

12
[(−2c+ 2r)U2 + (2c+ 4r)U3] = Q3

or ∙
2c+ 4

∆t

(∆x)2

¸
U3 = 14

∆t

∆x
+ 2c∆x

For c = c0r, we have the result,

U3 =
14 + 2c0
4 + 2c0

∆x

The α-family of approximation yields the equationÃ
c∆x

6

∙
2 1
1 2

¸
+

α∆t

∆x

∙
1 −1
−1 1

¸!½
U1n+1
U2n+1

¾

=

Ã
c∆x

6

∙
2 1
1 2

¸
− (1− α)∆t

∆x

∙
1 −1
−1 1

¸!½
U1n
U2n

¾
+∆t

½
Q1
Q2

¾

Using U1 = 0, Q2 = 1 and U
n+1
2 = ∆x, we obtainµ

c
∆x

3
+ α

∆t

∆x

¶
Un+12 =

µ
−(1− α)

∆t

∆x
+ c
∆x

3

¶
∆x+∆t

For c = c0r, we have the result, U3 = ∆x.
While the two results differ quite a bit, it should not be taken seriously in view

of the coarse mesh taken and the special boundary and initial conditions used. In
general, the space-time finite elements have a natural drawback in redefining the
initial-boundary value problem as an equivalent boundary value problem.
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Problem 8.59: The collocation time approximation methods are defined by the
following relations:

{ü}n+α = (1− α){ü}n + α{ü}n+1
{u̇}n+α = {u̇}n + α∆t[(1− γ){ü}n + γ{ü}n+α]

{u}n+α = {u}n + α∆t{u̇}n +
α(∆t)2

2
[(1− 2β){ü}n + 2β{ü}n+α]

The collocation scheme contains two of the well-known schemes: α = 1 gives the
Newmark’s scheme; β = 1

6 and γ = 1
2 gives the Wilson scheme. The collocation

scheme is unconditionally stable, second-order accurate for the following values of
the parameters:

α ≥ 1, γ =
1

2
,

α

2(1 + α)
≥ β ≥ 2α2 − 1

4(2α3 − 1)

Formulate the algebraic equations associated with the matrix differential equation

[M ]{ü}+ [C]{u̇}+ [K]{u} = {F}

using the collocation scheme.

Solution: Consider the equation

[M ]{ü}+ [C]{u̇}+ [K]{u} = {F} (1)

and the equations of the collocation scheme

{ü}s+α = (1− α){ü}s + α{ü}s+1 (2)

{u̇}s+α = {u̇}s + α∆t [(1− γ){ü}s + γ{ü}s+α] (3)

{u}s+α = {u}s + α∆t{u̇}s + α
(∆t)2

2
[(1− 2β){ü}s + 2β{ü}s+α] (4)

Like in Problem 6.23, we formulate the final equation for the acceleration vector. This
is done by writing Eq. (1) for t = ts+α and substituting for the acceleration, velocity,
and displacement at ts+α from Eqs. (2), (3), and (4), respectively. In using Eqs. (3)
and (4), the acceleration at ts+α is replaced by Eq. (2). We obtain

[Ĥ]s+α{ü}s+1 = {F̂}s+α − [M̂ ]s+α{ü}s − [Ĉ]s+α{u̇}s − [K]s+α{u}s (5)

where
[Ĥ]s+α = α ([M ]s+α + c1[C]s+α + c2[K]s+α)

[M̂ ]s+α = ((1− α)[M ]s+α + c3[C]s+α + c4[K]s+α)
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[Ĉ]s+α = [C]s+α + α∆t[K]s+α, {F̂}s+α = (1− α){F}s + α{F}s+1
c1 = αγ∆t, c2 = αβ(∆t)2, c3 = α(1− αγ)∆t, (0.5− αβ)α(∆t)2 (6)

Once the acceleration is known, Eqs. (3) and (4) can be used to compute the velocity
and displacement at time ts+1.

Problem 8.60: Consider the following pair of coupled partial differential equations:

− ∂

∂x

µ
a
∂u

∂x

¶
− ∂

∂y

∙
b

µ
∂u

∂y
+

∂v

∂x

¶¸
+

∂u

∂t
− fx = 0 (1)

− ∂

∂x

∙
b

µ
∂u

∂y
+

∂v

∂x

¶¸
− ∂

∂y

µ
c
∂v

∂y

¶
+

∂v

∂t
− fy = 0 (2)

where u and v are the dependent variables (unknown functions), a, b and c are known
functions of x and y, and fx and fy are known functions of position (x, y) and time t.
(a) Use the three-step procedure on each equation with a different weight function for

each equation (say, w1 and w2) to develop the (semidiscrete) weak form.
(b) Assume finite element approximation of (u, v) in the following form

u(x, y) =
nX
j=1

ψj(x, y)Uj(t) , v(x, y) =
nX
j=1

ψj(x, y)Vj(t) (3)

and develop the (semidiscrete) finite element model in the form

0 =
nX
j=1

M11
ij U̇j +

nX
j=1

K11
ij Uj +

nX
j=1

K12
ij Vj − F 1i

0 =
nX
j=1

M22
ij V̇j +

nX
j=1

K21
ij Uj +

nX
j=1

K22
ij Vj − F 2i (4)

You must define the algebraic form of the element coefficients K11
ij , K

12
ij , F

1
i etc.

(c) Give the fully discretized finite element model of the model (in the standard form;
you are not required to derive it).

Solution:
(a) The weak forms are given by

0 =

Z
Ωe
w1

½
− ∂

∂x

µ
a
∂u

∂x

¶
− ∂

∂y

∙
b

µ
∂u

∂y
+

∂v

∂x

¶¸
+

∂u

∂t
− fx

¾
dxdy

=

Z
Ωe

½
a
∂w1
∂x

∂u

∂x
+

∂w1
∂y

∙
b

µ
∂u

∂y
+

∂v

∂x

¶¸
+ w1

∂u

∂t
− w1fx

¾
dxdy

+

I
Γe
w1tx ds (5)
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0 =

Z
Ωe
w2

½
− ∂

∂x

∙
b

µ
∂u

∂y
+

∂v

∂x

¶¸
− ∂

∂y

µ
c
∂v

∂y

¶
+

∂v

∂t
− fy

¾
dxdy

=

Z
Ωe

½
∂w2
∂x

∙
b

µ
∂u

∂y
+

∂v

∂x

¶¸
+ c

∂w2
∂y

∂v

∂y
+ w2

∂v

∂t
−w2fy

¾
dxdy

+

I
Γe
w2ty ds (6)

where

tx = a
∂u

∂x
nx +

∙
b

µ
∂u

∂y
+

∂v

∂x

¶¸
ny, ty =

∙
b

µ
∂u

∂y
+

∂v

∂x

¶¸
nx + c

∂v

∂y
ny (7)

(b) The finite element model is given by Eq. (4) with the following coefficients:

M11
ij =

Z
Ωe

ψiψj dxdy

M22
ij =

Z
Ωe

ψiψj dxdy

K11
ij =

Z
Ωe

µ
a
∂ψi
∂x

∂ψj
∂x

+ b
∂ψi
∂y

∂ψj
∂y

¶
dxdy

K12
ij =

Z
Ωe
b
∂ψi
∂y

∂ψj
∂x

dxdy = K21
ji

K22
ij =

Z
Ωe

µ
b
∂ψi
∂x

∂ψj
∂x

+ c
∂ψi
∂y

∂ψj
∂y

¶
dxdy

F 1i =

Z
Ωe
fxψi dxdy +

I
Γe
txψi ds

F 2i =

Z
Ωe
fyψi dxdy +

I
Γe
tyψi ds (8)

(c) The pair of equations in (4) can be written in matrix form as∙
[M11] [0]
[0] [M22]

¸½ {U̇}
{V̇ }

¾
+

∙
[K11] [K12]
[K21] [K22]

¸½ {U}
{V }

¾
=

½ {F 1}
{F 2}

¾
or

[M ]{∆̇}+ [K]{∆} = {F} (9)

which is in the standard form of a parabolic equation [see Eq. (8.6.6b)]. Hence, the
fully discretized finite element model is given by Eqs. (8.6.10a) and (8.6.10b).
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Chapter 9

INTERPOLATION FUNCTIONS,

NUMERICAL INTEGRATION,

AND MODELING CONSIDERATIONS

Problem 9.1: Show that the interpolation functions for the three-node equilateral
triangular element given in Fig. P9.1 are

ψ1 =
1

2

µ
1− ξ − 1√

3
η

¶
, ψ2 =

1

2

µ
1 + ξ − 1√

3
η

¶
, ψ3 =

1√
3
η

Figure P9.1

Solution: Since ψ1 must vanish on line connecting nodes 2 and 3, it must be of the
form

ψ1(ξ, η) = c1
h
η −
√
3 (1− ξ)

i
Since ψ1(−1, 0) = 1, we obtain c1 = −1/2

√
3. Thus, we have

ψ1(ξ, η) = c1
h
η −
√
3 (1− ξ)

i
=
1

2

µ
1− ξ − 1√

3
η

¶
Similarly, ψ2 should be of the form ψ2(ξ, η) = c2

h
η −
√
3 (1 + ξ)

i
and it should be

equal to unity at node 2, giving c2 = −1/2
√
3. Hence, we have

ψ2(ξ, η) = c2
h
η −
√
3 (1 + ξ)

i
=
1

2

µ
1 + ξ − 1√

3
η

¶
Finally, we know that ψ3 must vanish on line η = 0. Hence, it is of the form

ψ3(ξ, η) = c3η → ψ3(ξ, η) =
η√
3
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Problem 9.2: Show that the interpolation functions that involve the term ξ2 + η2

for the five-node rectangular element shown in Fig. P9.2 are given by

ψ1 = 0.25(−ξ − η + ξη) + 0.125(ξ2 + η2)

ψ2 = 0.25(ξ − η − ξη) + 0.125(ξ2 + η2)

ψ3 = 0.25(ξ + η + ξη) + 0.125(ξ2 + η2)

ψ4 = 0.25(−ξ + η − ξη) + 0.125(ξ2 + η2)

ψ5 = 1− 0.5(ξ2 + η2)

Figure P9.2

Solution: The interpolation functions are of the form

ψi(ξ, η) = ai + biξ + ciη + diξη + ei(ξ
2 + η2)

For example, using the interpolation property of ψ1, we obtain five sets of algebraic
relations, which can be expressed in matrix form as⎡⎢⎢⎢⎢⎣

1 0 0 0 0
1 −1 −1 1 2
1 1 −1 −1 2
1 1 1 1 2
1 −1 1 −1 2

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a1
b1
c1
d1
e1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0
1
0
0
0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
The determinant of this matrix is 32. Using Cramer’s rule, we can solve the matrix
equations for the constants: a1 = 0, b1 = −8/32 = −0.25, c1 = −0.25, d1 = 0.25, and
e1 = 0.125. Thus we have

ψ1(ξ, η) = 0.25(−ξ − η + ξη) + 0.125(ξ2 + η2)

Similarly, the other functions can be determined.

Problem 9.3: Calculate the interpolation functions ψi(x, y) for the quadratic
triangular element shown in Fig. P9.3. Hint: Use Eq. (9.2.16), where Li are given
by Eq. (8.2.25).
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Figure P9.3

Solution: Using the procedure described in Example 9.2.1, we obtain

ψ1 = L1(2L1 − 1), ψ2 = L2(2L2 − 1), ψ3 = L3(2L3 − 1)

ψ4 = 4L1L2, ψ5 = 4L2L3, ψ6 = 4L1L3

where Li (i = 1, 2, 3) are the linear interpolation functions ψi of Eq. (8.2.25). The
coefficients αi,βi and γi for the element shown are

α1 = 150− (−30) = 180, α2 = 0, α3 = 0, β1 = −13, β2 = 10

β3 = 3, γ1 = −5, γ2 = −10, γ3 = 15

The interpolation functions become (2A = α1 + α2 + α3)

L1 =
1

180
(180− 13x− 5y) , L2 =

1

180
(10x− 10y) , L3 =

1

180
(3x+ 15y)

Hence, the quadratic function ψ1 for node 1 of the given element is

ψ1(x, y) = L1(2L1 − 1) =
1

180× 90 (180− 13x− 5y) (90− 13x− 5y)

Similarly, we obtain

ψ2(x, y) = L2(2L2 − 1) =
1

162
(x− y) (−9 + x− y)

ψ3(x, y) = L3(2L3 − 1) =
1

1800
(x+ 5y) (−30 + x+ 5y)

ψ4(x, y) = 4L1L2 =
1

810
(180− 13x− 5y) (x− y)

ψ5(x, y) = 4L2L3 =
1

1080
(x− y) (x+ 5y)

ψ6(x, y) = 4L3L1 =
1

10800
(180− 13x− 5y) (x+ 5y)
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Problem 9.4: Determine the interpolation function ψ14 in terms of the area
coordinates, Li for the quartic triangular element shown in Fig. P9.4.

Solution: Using Eq. (9.2.14), we obtain the 4th degree polynomial (k = 5 and
n = 15). First, note that ψ14 must vanish along lines L1 = 0, L2 = 0 and L3 = 0. It
must also vanish on line L2 = 1/4. Thus

ψ14 =
L1 − 0
1
4 − 0

L2 − 0
2
4 − 0

L3 − 0
1
4 − 0

L2 − 1
4

2
4 −

1
4

= 32L1L2L3(4L2 − 1)

Figure P9.4

Problem 9.5: Derive the interpolation function of a corner node in a cubic
serendipity element.

Figure P9.5

Solution: First we note that the polynomials used for rectangular serendipity elements
should not contain terms under the cone of Figure 9.2.5. For the element under
consideration, the polynomial form is given in Eq. (9.2.32). Now consider node 1 of
Figure 9.2.8. The function ψ1 must vanish on lines ξ = 1 and η = 1. In addition, it
should vanish at nodes 2, 3, 5 and 7. For any corner node, the interpolation function
is of the form

ψi(ξ, η) = (1 + ξiξ)(1 + ηiη)(ai + biξ
2 + ciη

2), i = 1, 2, 9 or 12
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where (ξi, ηi) denote the local coordinates of the corner nodes. For node 1, we have
ξ1 = −1 and η1 = −1, and ψ1 has the form

ψ1(ξ, η) = (1− ξ)(1− η)(a1 + b1ξ
2 + c1η

2)

We must determine the constants a1, b1, and c1 using the conditions,

ψ1(−1,−1) = 1, ψ1(−
1

3
,−1) = 0, ψ1(−1,−

1

3
) = 0

These conditions give the relations

a1 + b1 + c1 =
1

4
, a1 +

b1
9
+ c1 = 0, a1 + b1 +

c1
9
= 0

whose solution is: a1 = −10/32, b1 = c1 = 9/32, and the interpolation function ψ1
becomes

ψ1(ξ, η) =
1

32
(1− ξ)(1− η)[−10 + 9(ξ2 + η2)]

For a node intermediate to the corner nodes, the interpolation functions take a
different form. For nodes 2 and 3, for example, ψ must vanish at ξ = −1, ξ = 1 and
η = 1:

ψi(ξ, η) = (1− ξ2)(1− η)(ai + biξ), i = 2 or 3

and for nodes 5 and 7, ψ must vanish at ξ = 1, η = −1 and η = 1.

ψi(ξ, η) = (1− ξ)(1− η2)(ai + biη), i = 5 or 7

The constants ai and bi are to be determined using the interpolation property. As an
example, consider node 2. We have

ψ2(ξ, η) = (1− ξ2)(1− η)(a2 + b2ξ)

The a2 and b2 are to be determined from the conditions,

ψ2(−
1

3
,−1) = 1, ψ2(

1

3
,−1) = 0

which give a2 = −b2/3 = 9/32. Hence,

ψ2(ξ, η) =
9

32
(1− ξ2)(1− η)(1− 3ξ)

Problem 9.6: Consider the five-node element shown in Fig. P9.6. Using the basic
linear and quadratic interpolations along the coordinate directions ξ and η, derive
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the interpolation functions for the element. Note that the element can be used as a
transition element connecting four-node elements to eight- or nine-node elements.

Figure P9.6

Solution: First, we construct the interpolation function associated with node 5. It
should vanish at ξ = 1, ξ = −1, and η = −1. Hence, it should be of the form

ψ5(ξ, η) = c5(1− ξ)(1 + ξ)(1 + η)

The constant c5 is determined from the condition ψ5(0, 1) = 1. We have c5 = 1/2.

ψ5(ξ, η) =
1

2
(1− ξ2)(1 + η)

For any corner node of the bilinear element, the interpolation function is of the
form

ψ̂i(ξ, η) = (1 + ξiξ)(1 + ηiη)

where (ξi, ηi) denote the local coordinates of the corner nodes:

(ξ1, η1) = (−1,−1), (ξ2, η2) = (1,−1), (ξ3, η3) = (1, 1), (ξ4, η4) = (−1, 1)

These should be corrected to vanish at node 5: (ξ5, η5) = (0, 1). The bilinear

functions ψ̂1 and ψ̂2 already satisfy this property [i.e., vanish at point (0,1)]. Thus,

ψ1 = ψ̂1,ψ2 = ψ̂2, and we need to correct only ψ̂3 and ψ̂4 so that they vanish at the
point (0,1). These functions take a value of 0.5 at node 5, while ψ5 takes a value of

unity. Therefore, 0.5×ψ5 should be subtracted from ψ̂3 and ψ̂4 to obtain the required
functions. The final result is

ψ1 =
1

4
(1− η)(1− ξ), ψ2 =

1

4
(1 + ξ)(1− η)

ψ3 =
1

4
(1 + ξ)(1 + η)ξ, ψ4 = −

1

4
(1− ξ)(1 + η)ξ, ψ5 =

1

2
(1− ξ2)(1 + η)
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Problem 9.7: (Nodeless variables) Consider the four-node rectangular element with
interpolation of the form

u
4X
i−1
uiψi +

4X
i=1

ciφi

where ui are the nodal values and ci are arbitrary constants. Determine the form of
ψi and φi for the element.

Solution: Since ui is the value of u at the i−th node of the element, the second
part should be identically zero at the nodes. This implies, for non—zero values of
the parameters (c1, c2, c3, c4, that (φ1,φ2,φ3,φ4) should take the value of zero at the
i−th node, and be linearly independent. Thus, ψi, (i = 1, 2, 3, 4) are the linear
interpolation functions of the four—node rectangular element, and φi are the lowest
order polynomials that satisfy the requirement, φi(ξj, ηj) = 0 for any i and j. The
following functions satisfy the requirement

φ1 = (1− ξ2), φ2 = (1− η2), φ3 = (1− ξ2)η, φ4 = ξ(1− η2)

Problems 9.8—9.10: Determine the Jacobian matrix and the transformation
equations for the elements given in Fig. P9.8—P9.10.

Figure P9.8

Solution to Problem 9.8: The transformation equations are

x =
4X
i=1

xiψi = 13.66 + 5ξ + 8.66η, y =
4X
i=1

yiψi = 5(1 + η)

The Jacobian matrix can be computed using the definition or using Eq. (9.3.11b):

[J ] =

"
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

#
=

⎡⎣ ∂ψ̂1
∂ξ

∂ψ̂2
∂ξ

∂ψ̂3
∂ξ

∂ψ̂4
∂ξ

∂ψ̂1
∂η

∂ψ̂2
∂η

∂ψ̂3
∂η

∂ψ̂4
∂η

⎤⎦
⎡⎢⎢⎣
x1 y1
x2 y2
x3 y3
x4 y4

⎤⎥⎥⎦
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=
1

4

∙−(1− η) (1− η) (1 + η) −(1 + η)
−(1− ξ) −(1 + ξ) (1 + ξ) (1− ξ)

¸⎡⎢⎢⎣
0.0 0.0
10.0 0.0
27.32 10.0
17.32 10.0

⎤⎥⎥⎦
=

∙
5.0 0.0
8.66 5.0

¸
Thus, the Jacobian is a positive number, J = 25.

Figure P9.9

Solution to Problem 9.9: The coordinates of the element nodes are:⎡⎢⎢⎣
0.0 0.0
5.0 0.0
6.5 7.0
0.0 5.0

⎤⎥⎥⎦
The transformation equations are

x =
4X
i=1

xiψi =
1

4
(1 + ξ)(11.5 + 1.5η), y =

4X
i=1

yiψi =
1

4
(1 + η)(12 + 2ξ)

The Jacobian matrix is given by

[J ] =

"
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

#
=

∙
2.875 + 0.375η 0.5 + 0.5η
0.375 + 0.375ξ 3.0 + 0.5ξ

¸

The Jacobian is

J =
1

8
(67.5 + 7.5η + 10ξ)

which is positive for any (ξ, η) such that −1 ≤ ξ ≤ 1 and −1 ≤ η ≤ 1.
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Figure P9.10

Solution to Problem 9.10: Note that the node numbering used in Figure P9.10 is
the same as that used for the (master) element in Figure 9.2.8. The matrix of nodal
coordinates is given by ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0 0.0
3.0 0.0
6.0 0.0
0.0 3.0
6.5 1.5
0.0 6.0
5.0 6.0
10.0 6.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The transformation equations are

x =
8X
i=1

xiψ̂i(ξ, η) = 3.25 + 3.25ξ + η + ξη + 0.75η2 + 0.75ξη2

y =
8X
i=1

yiψ̂i(ξ, η) = 2.25− 0.75ξ + 3η + 0.75η2 + 0.75ξη2

The Jacobian matrix becomes

[J ] =

"
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

#
=

∙
3.25 + η + 0.75η2 −0.75 + 0.75η2
(1 + 1.5η)(1 + ξ) 3.0 + 1.5η(1 + ξ)

¸
The Jacobian is

J = 10.5 + 0.75ξ + 9η + 6ξη + 3η2 + 0.75ξη2

A plot of the Jacobian shows that J = 0 at ξ = 1 and η = −1 and J > 0 everywhere
else.
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Problem 9.11: Using the Gauss quadrature, determine the contribution of a
constant distributed source to nodal points of the four-node finite element in Fig.
P9.9.

Solution: The integral to be evaluated is

fei =

Z
Ωe
f0ψ

e
i (x, y) dxdy =

Z 1

−1

Z 1

−1
f0ψ

e(ξ, η)J dξdη

Note that the integrand is quadratic in ξ and η. Hence, a 2 × 2 Gauss rule would
evaluate the integrand exactly. For example, we have (see Problem 9.9 for the
Jacobian)

fe1 =

Z 1

−1

Z 1

−1
f0
1

4
(1− ξ)(1− η)

1

8
(67.5 + 7.5η + 10ξ) dξdη

=
f0
32

Z 1

−1
(1− η)

∙
(1− 1√

3
)(67.5 + 7.5η +

10√
3
)

+ (1 +
1√
3
)(67.5 + 7.5η − 10√

3
)

¸
dη

=
f0
16

Z 1

−1
(1− η)(67.5 + 7.5η − 10

3
) dη

=
f0
16

∙
(1− 1√

3
)(67.5 +

7.5√
3
− 10
3
) + (1 +

1√
3
)(67.5− 7.5√

3
− 10
3
)

¸
=
f0
8
(67.5− 7.5

3
− 10
3
)

=
185

24
f0 = 7.70833f0

Similarly, the remaining three components can be computed:

fe1 = 7.7083f0, f
e
2 = 8.5417f0, f

e
3 = 9.1667f0, f

e
4 = 8.3333f0

Problem 9.12: For a 12-node serendipity (cubic) element, as illustrated in Fig.
P9.12, show that the Jacobian J = J11 is

J = 0.4375 + 0.84375(b− a) + 0.5625η − 0.84375(b− a)η
+ 1.125ξ − 0.5625(a+ b)ξ − 1.125ηξ + 0.5625(a+ b)ηξ
+ 1.6875ξ2 − 2.53125(b− a)ξ2 − 1.6875ηξ2 + 2.53125(b− a)ηξ2

What can you conclude from the requirement J > 0?
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Figure P9.12

Solution: We have (after a lengthy algebra using Maple)

x = 0.4375 + 0.28125(a+ b) + 0.4375ξ + 0.5625η + 0.84375(b− a)ξ
− 0.28125(a+ b)η + 0.5625ξη + 0.84375(a− b)ξη
+ 0.5625ξ2 − 0.28125(a+ b)ξ2 − 0.5625ηξ2 + 0.28125(a+ b)ηξ2

+ 0.5625ξ3 + 0.84375(a− b)ξ3 − 0.5625ηξ3 + 0.84375(b− a)ηξ3

y = 1 + η

Hence, the Jacobian is J = J11 because J12 = 0 and J22 = 1

J = J11 = 0.4375 + 0.84375(b− a) + 0.5625η − 0.84375(b− a)η
+ 1.125ξ − 0.5625(a+ b)ξ − 1.125ηξ + 0.5625(a+ b)ηξ
+ 1.6875ξ2 − 2.53125(b− a)ξ2 − 1.6875ηξ2 + 2.53125(b− a)ηξ2

Note that

J(ξ, η = −1) = −0.125 + 1.6875(b− a) + 2.25ξ − 1.125(a+ b)ξ
+ 3.375ξ2 − 5.0625(b− a)ξ2

J(ξ, η = +1) = 1.0

Thus J = J11 > 0 ensures a unique transformation and preservation of the sense of
the coordinate system in the master rectangular element, provided a and b are such
that

5.5− 1.125(a+ b)− 3.375(b− a) > 0 and 1.0 + 1.125(a+ b)− 3.375(b− a) > 0

The above inequalities place a restriction on the values of a and b. Clearly, for
a > 0.666667 and b = 1.333333 (the usual location of the midside nodes), the
inequalities are met (i.e., J = 1 > 0). A plot of the Jacobian shows, for example,
that J = 0 when (i) a = 0.27777 = 5/18 and (ii) b = 1 and J < 0 for a = 0.27777
and any b < 0.4745.
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Problem 9.13: Determine Jacobian of the eight-node rectangular element of Fig.
P9.13 in terms of the parameter a.

Figure P9.13

Solution: Using the coordinate system (x, y), which coincides with the natural
coordinate system (ξ, η), we obtain

x = ξ − a
2
(1− ξ2)(1− η), y = η

The Jacobian is given by J = J11 (J12 = 0 and J22 = 1)

J = 1.0 + a(1− η)ξ

which is zero at (i) (ξ, η) = (−1,−1) when a = 0.5 (left quarter point) and (ii)
(ξ, η) = (1,−1) when a = −0.5 (right quarter point). The Jacobian is negative when
the node is placed inside a quarter point and the nearest corner node.

Problem 9.14: Determine the conditions on the location of node 3 of the
quadrilateral element shown in Fig. P9.14. Show that the transformation equations
are given by

x =
1

4
(1 + ξ) [2(1− η) + a(1 + η)]

y =
1

4
(1 + η) [2(1− ξ) + b(1 + ξ)]

Figure P9.14
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Solution: The transformation equations are

x =
4X
i=1

xiψi =
1

4
(1 + ξ) [2(1− η) + a(1 + η)]

y =
4X
i=1

yiψi =
1

4
(1 + η) [2(1− ξ) + b(1 + ξ)]

The Jacobian matrix is

[J ] =
1

4

∙−(1− η) (1− η) (1 + η) −(1 + η)
−(1− ξ) −(1 + ξ) (1 + ξ) (1− ξ)

¸⎡⎢⎢⎣
0 0
2 0
a b
0 2

⎤⎥⎥⎦
=
1

4

∙
2(1− η) + a(1 + η) (b− 2)(1 + η)
(a− 2)(1 + ξ) 2(1− ξ) + b(1 + ξ)

¸
The Jacobian is given by

J =
1

4
[a(1 + η) + b(1 + ξ)− 2(ξ + η)]

For positive Jacobian at the point (ξ, η)=(1,1), it follows that a+b > 2. In particular,
J = 0 when a = 0.5, b = 1.5 and ξ = η = 1.0.

Problem 9.15: Determine the global derivatives of the interpolation functions for
node 3 of the element shown in Fig. P9.9.

Solution: The inverse of the Jacobian matrix is given by

J−1 =
1

J

∙
3 + 0.5ξ −0.5(1 + η)

−0.375(1 + ξ) 2.875 + 0.375η

¸
Hence, the global derivatives of the interpolation functions for node 3 of the element
in Figure P9.9 are

∂ψ̂3
∂x

=
5(1 + η)

8J
,

∂ψ̂3
∂y

=
5(1 + ξ)

8J

where J = (135 + 15η + 20ξ)/16.

Problem 9.16: Let the transformation between the global coordinates (x, y) and
local normalized coordinates (ξ, η) in a Lagrange element Ωe be

x =
mX
i=1

xiψ̂i(ξ, η), y =
mX
i=1

yiψ̂i(ξ, η)
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where (xei , y
e
i ) denote the global coordinates of the element nodes. The differential

lengths in the two coordinates are related by

dxe =
∂xe
∂ξ
dξ +

∂xe
∂η

∂η, dye =
∂ye
∂ξ

ξ +
∂ye
∂η
dη

or ½
dxe
dye

¾
=

" ∂xe
∂ξ

∂xe
∂η

∂ye
∂ξ

∂ye
∂η

#½
dξ
dη

¾
= [J ]

½
dξ
dη

¾
In the finite element literature the transpose of [T ] is called the Jacobian matrix,
[J ]. Show that the derivatives of the interpolation function ψei (ξ, η) with respect to
the global coordinates (x, y) are related to their derivatives with respect to the local
coordinates (ξ, η) by ( ∂ψei

∂x
∂ψei
∂y

)
= [J ]−1

( ∂ψei
∂ξ
∂ψei
∂η

)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂2ψei
∂x2
∂2ψei
∂y2

∂2ψei
∂x∂y

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
⎡⎢⎢⎢⎣
³
∂xe
∂ξ

´2 ³
∂ye
∂ξ

´2
2∂xe∂ξ

∂ye
∂ξ³

∂xe
∂η

´2 ³
∂ye
∂η

´2
2∂xe∂η

∂ye
∂η

∂xe
∂ξ

∂xe
∂η

∂ye
∂ξ

∂ye
∂η

∂xe
∂η

∂ye
∂ξ +

∂xe
∂ξ

∂ye
∂η

⎤⎥⎥⎥⎦
−1

×

⎛⎜⎜⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂2ψei
∂ξ2

∂2ψei
∂η2

∂2ψei
∂ξ∂η

⎫⎪⎪⎪⎬⎪⎪⎪⎭−
⎡⎢⎢⎣

∂2xe
∂ξ2

∂2ye
∂ξ2

∂2xe
∂η2

∂2ye
∂η2

∂2xe
∂ξ ∂η

∂2ye
∂ξ∂η

⎤⎥⎥⎦
( ∂ψei

∂x
∂ψei
∂y

)⎞⎟⎟⎟⎠
Problem 9.17: (Continuation of Problem 9.16) Show that the Jacobian can be
computed from the equation

[J ] =

( ∂ψe1
∂ξ

∂ψe2
∂ξ · · · ∂ψen

∂ξ
∂ψe1
∂η

∂ψe2
∂η · · · ∂ψen

∂η

)⎡⎢⎢⎢⎣
xe1 ye1
xe2 ye2
...

...
xen yen

⎤⎥⎥⎥⎦

Solution of Problems 16 and 17: Part of the Problem 9.16 and all of Problem 9.17
is already discussed in the problem statement. The same procedure as that used
for the first derivatives can be used (i.e. chain rule of differentiation) for the second
derivatives and arrive at the required result. For example, we have

∂ψi
∂ξ

=
∂ψi
∂x

∂x

∂ξ
+

∂ψi
∂y

∂y

∂ξ
,
∂ψi
∂η

=
∂ψi
∂x

∂x

∂η
+

∂ψi
∂y

∂y

∂η
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and

∂2ψi
∂ξ2

=
∂

∂ξ

µ
∂ψi
∂x

∂x

∂ξ
+

∂ψi
∂y

∂y

∂ξ

¶
=

∂

∂ξ

µ
∂ψi
∂x

¶
∂x

∂ξ
+

∂ψi
∂x

∂2x

∂ξ2
+

∂

∂ξ

µ
∂ψi
∂y

¶
∂y

∂ξ
+

∂ψi
∂y

∂2y

∂ξ2

=
∂2ψi
∂x2

µ
∂x

∂ξ

¶2
+

∂2ψi
∂x∂y

∂x

∂ξ

∂y

∂ξ
+

∂ψi
∂x

∂2x

∂ξ2

+
∂2ψi
∂y2

µ
∂y

∂ξ

¶2
+

∂2ψi
∂x∂y

∂x

∂ξ

∂y

∂ξ
+

∂ψi
∂y

∂2y

∂ξ2

Similarly, the second derivative with respect to η and the mixed derivative can be
evaluated:

∂2ψi
∂η2

=
∂2ψi
∂x2

µ
∂x

∂η

¶2
+ 2

∂2ψi
∂x∂y

∂x

∂η

∂y

∂η
+

∂ψi
∂x

∂2x

∂η2
+

∂ψi
∂y

∂2y

∂η2
+

∂2ψi
∂y2

µ
∂y

∂η

¶2
∂2ψi
∂η∂ξ

=
∂2ψi
∂x2

∂x

∂ξ

∂x

∂η
+

∂2ψi
∂x∂y

µ
∂x

∂η

∂y

∂ξ
+

∂x

∂ξ

∂y

∂η

¶
+

∂2ψi
∂y2

∂y

∂ξ

∂y

∂η

+
∂ψi
∂x

∂2x

∂η∂ξ
+

∂ψi
∂y

∂2y

∂η∂ξ

Since we need to write the global derivatives in terms of the local derivatives, set up
the equations for the global derivatives from the above three equations. This will
yield the required equations.

Problem 9.18: Find the Jacobian matrix for the nine-node quadrilateral element
shown in Fig. P9.18. What is the determinant of the Jacobian matrix?

Figure P9.18

Solution: This problem is similar to one in Problem 9.10 (see Figure P9.10), except
that it is a nine-node element used here. Once again we note that the node numbering
used in Figure P9.14 is different from that used for the master element in Figure 9.6.
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The matrix of nodal coordinates is ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0 0.0
2.0 0.0
4.0 0.0
0.0 2.0
2.5 2.0
4.5 1.0
0.0 4.0
3.0 4.0
6.0 4.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The transformation equations are

x =
9X
i=1

xiψ̂i(ξ, η) =
1

4

h
10 + ξ(9− ξ − 6ξη) + 2η(1− 2ξ)− 5ξη2(1 + ξ)

i

y =
9X
i=1

yiψ̂i(ξ, η) =
1

2
(1 + η) [4− ξ(1 + ξ)(1 + η)]

The Jacobian matrix becomes

[J ] =

"
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

#

=
1

4

∙
9− 4η − 2ξ(1 + 6η)− 5η2(1 + 2ξ) −2(1 + 2ξ)(1 + η)2

2(1 + ξ)(1− 3ξ − 5ξη) 8− 4ξ(1 + ξ)(1 + η)

¸

The Jacobian is

J = 4.75− 3.25ξ − 1.5η − 8.5ξη − 3.5ξ2 − 2.25η2 − 5.25ξη2 − 5ηξ2

− ξ3 − 2ξ3η − 1.5ξ2η2 − ξ3η2

Problem 9.19: For the eight-node element shown in Fig. P9.19, show that the
x-coordinate along the side 1—2 is related to the ξ-coordinate by the relation

x = −12ξ(1− ξ)xe1 +
1
2ξ(1 + ξ)xe2 + (1− ξ2)xe5

and that the relations

ξ = 2

µ
x

a

¶1/2
− 1, ∂x

∂ξ
= (xa)1/2
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hold. Also, show that

uh(x, 0) = −
"
2

µ
x

a

¶1/2
− 1

# "
1−

µ
x

a

¶1/2#
ue1

+

"
−1 + 2

µ
x

a

¶1/2#µx
a

¶1/2
ue2 + 4

"µ
x

a

¶1/2
− x
a

#
ue5

∂uh
∂x

¯̄̄̄
¯
(x,0)

= − 1

(xa)1/2

(
1

2

"
3− 4

µ
x

a

¶1/2#
ue1 +

1

2

"
−1 + 4

µ
x

a

¶1/2#
ue2

+2

"
1− 2

µ
x

a

¶1/2#
ue5

)

Thus, ∂uh/∂x grows at a rate of (xa)
−1/2 as x approaches zero along the side 1—2.

In other words, we have a x−1/2 singularity at node 1. Such elements are used to
fracture mechanics problems.

Figure P9.19

Solution: The transformation equation for x is given by

x = x1 ·
1

4
(1− ξ)(1− η)(−1− ξ − η) + x5 ·

1

2
(1− ξ2)(1− η)

+ x2 ·
1

4
(1 + ξ)(1− η)(−1 + ξ − η)|η = −1

Substituting x1 = 0, x2 = a, x5 = a/4, we obtain

x =
a

4
(1− ξ2) +

a

2
ξ(1 + ξ)

The roots of the above equation are

(ξ)1 = 2

r
x

a
− 1, (ξ)2 = −2

r
x

a
− 1

The second root is not admissible here. Differentiating ξ with respect to x, we obtain
∂ξ/∂x = 1/

√
ax.
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New Problem 9.1: Determine the interpolation functions for the rectangular
element shown in Fig. NP9.1. Hint: Make use of the one-dimensional interpolation
functions and the interpolation properties.

Figure NP.1

Solution: First, note the following interpolation functions associated with nodes 5, 6,
and 7:

p5(η) = (1− η2), p6(ξ) =
27

16
(1− ξ2)

µ
1

3
+ ξ

¶
, p7(ξ) =

27

16
(1− ξ2)

µ
1

3
− ξ

¶
Then the interpolation functions associated with nodes 5, 6, and 7 can be written as

ψ5(ξ, η) = p5

∙
1

2
(1 + ξ)

¸
, ψ6(ξ, η) = p6(ξ)

∙
1

2
(1 + η)

¸
, ψ7(ξ, η) = p7(ξ)

∙
1

2
(1 + η)

¸
The interpolation functions associated with the corner nodes can be constructed as
follows:

ψ1(ξ, η) =
1

4
(1 + ξ)(1 + η), ψ2(ξ, η) =

1

4
(1 + ξ)(1− η)− 1

2
ψ5(ξ, η)

ψ3(ξ, η) =
1

4
(1− ξ)(1− η)− 1

2
ψ5(ξ, η)−

2

3
ψ6(ξ, η)−

1

3
ψ7(ξ, η)

ψ4(ξ, η) =
1

4
(1− ξ)(1 + η)− 1

3
ψ6(ξ, η)−

2

3
ψ7(ξ, η)
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Chapter 10

FLOWS OF VISCOUS
INCOMPRESSIBLE FLUIDS

Problem 10.1: Consider Eqs. (10.1) and (10.2) in cylindrical coordinates (r, θ, z).
For axisymmetric flows of viscous incompressible fluids (i.e., flow field is independent
of θ coordinate), we have

ρ
∂u

∂t
=
1

r

∂

∂r
(rσrr)−

σθθ
r
+

∂σrz
∂z

+ fr (i)

ρ
∂w

∂t
=
1

r

∂

∂r
(rσrz) +

∂σzz
∂z

+ fz (ii)

1

r

∂

∂r
(ru) +

∂w

∂z
= 0 (iii)

where

σrr = −P + 2µ
∂u

∂r
, σθθ = −P + 2µ

u

r

σzz = −P + 2µ
∂w

∂z
, σrz = µ

µ
∂u

∂z
+

∂w

∂r

¶ (iv)

Develop the semidiscrete finite element model of the equation by the pressure-velocity
formulation.

Solution:
Weak Forms The weak forms of the three equations are

0 =2π

Z
Ωe
w1

∙
ρ
∂u

∂t
− 1
r

∂

∂r
(rσrr) +

σθθ
r
− ∂σrz

∂z
− fr

¸
rdrdz (1a)

=2π

Z
Ωe

∙
ρw1

∂u

∂t
+

∂w1
∂r

σr + w1
σθ
r
+

∂w1
∂z

σrz − w1fr
¸
rdrdz

− 2π
I
Γe
w1trr ds, tr = σrnr + σrznz (1b)

0 =2π

Z
Ωe
w2

∙
ρ
∂w

∂t
− 1
r

∂

∂r
(rσrz)−

∂σzz
∂z
− fz

¸
rdrdz (2a)

=2π

Z
Ωe

∙
ρw2

∂w

∂t
+

∂w2
∂r

σrz +
∂w2
∂z

σz − w2fz
¸
rdrdz

− 2π
I
Γe
w2tzr ds, tz = σrznr + σzznz (2b)
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0 =2π

Z
Ωe
w3

∙
−1
r

∂

∂r
(ru)− ∂w

∂z

¸
rdrdz (3a)

=2π

Z
Ωe

∙
−w3

∂

∂r
(ru)− rw3

∂w

∂z

¸
drdz (3b)

Semi-Discrete Finite Element Model For the interpolation of the form

u(r, z) =
mX
j=1

ujψj(r, z), w(r, z) =
mX
j=1

wjψj(r, z), P (r, z) =
nX
j=1

Pjφj(r, z) (4)

the finite element model is given by⎡⎣ [M11] [0] [0]
[0] [M22] [0]
[0] [0] [M33]

⎤⎦⎧⎨⎩
{ü}
{v̈}
{P̈}

⎫⎬⎭+
⎡⎣ [K11] [K12] [K13]
[K12]T [K22] [K23]
[K13]T [K23]T [K33]

⎤⎦⎧⎨⎩
{u}
{v}
{P}

⎫⎬⎭
=

⎧⎨⎩
{F 1}
{F 2}
{F 3}

⎫⎬⎭ (5)

M11
ij =M

22
ij = 2π

Z
Ωe

ρψiψj rdrdz

K11
ij =2π

Z
Ωe
µ

∙
2

µ
∂ψi
∂r

∂ψj
∂r

+
ψi
r

ψj
r

¶
+

∂ψi
∂z

∂ψj
∂z

¸
rdrdz

K12
ij =2π

Z
Ωe
µ
∂ψi
∂z

∂ψj
∂r

rdrdz

K13
ij =− 2π

Z
Ωe

µ
r
∂ψi
∂r

φj + ψiφj

¶
drdz

K22
ij =2π

Z
Ωe
µ

µ
∂ψi
∂r

∂ψj
∂r

+ 2
∂ψi
∂z

∂ψj
∂z

¶
rdrdz

K23
ij =− 2π

Z
Ωe

∂ψi
∂z

φj rdrdz, K33
ij = 0, F 3i = 0

F 1i =2π

Z
Ωe
frψi rdrdz + 2π

I
Γe
ψitr rds

F 2i =2π

Z
Ωe
fzψi rdrdz + 2π

I
Γe
ψitz rds (5)

Fully-Discretized Finite Element Model Equation (5) is of the general form

[M ]{∆̈}+ [K]{∆} = {F} (7a)
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where

{∆} =

⎧⎨⎩
{u}
{v}
{P}

⎫⎬⎭ (7b)

Then it follows that [see Eqs. (11.32)—(11.33b)]:

[K̂]{∆}s+1 = {F̂}s,s+1 (8)

where

[K̂] = [M ] + a1[K] (9)

{F̂} = ([M ]− a2[K]) {∆}s + a1{F}s+1 + a2{F}s
a1 = α∆t, a2 = (1− α)∆t (10)

Problem 10.2: Develop the semidiscrete finite element model of the equations in
Problem 10.1 using the penalty function formulation.

Solution: For the finite element model, we begin with the weak forms of the first
equation. Adding Eqs. (1b) and (2b)

0 =2π

Z
Ωe

∙
ρw1

∂u

∂t
+ 2µ

µ
∂w1
∂r

∂u

∂r
+
w1
r

u

r

¶
+ µ

∂w1
∂z

µ
∂u

∂z
+

∂w

∂r

¶
− w1fr

¸
rdrdz

+2π

Z
Ωe

∙
ρw2

∂w

∂t
+

∂w2
∂r

µ
∂u

∂z
+ µ

∂w

∂r

¶
+ 2µ

∂w2
∂z

∂w

∂z
− w2fz

¸
rdrdz

−2π
I
Γe
(w1tr + w2tz) rds−

Z
Ωe

µ
∂w1
∂r

+
w1
r
+

∂w2
∂z

¶
P rdrdz (1)

Since w1 and w2 satisfy the incompressibility constraint

1

r

∂

∂r
(rw1) +

∂w2
∂z

= 0 (2)

we can setZ
Ωe

µ
∂w1
∂r

+
w1
r
+

∂w2
∂z

¶
P rdrdz =

Z
Ωe

∙
1

r

∂

∂r
(rw1) +

∂w2
∂z

¸
P rdrdz = 0 (3)

Next we add the following expression due to the constraint (2) to Eq. (1):

γ

Z
Ωe

µ
∂w1
∂r

+
w1
r
+

∂w2
∂z

¶µ
∂u

∂r
+
u

r
+

∂w

∂z

¶
rdrdz (4)

This amounts to replacing P with

P = −γ
µ
∂u

∂r
+
u

r
+

∂w

∂z

¶
(5)
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The finite element model based on Eq. (1)+Eq. (4) is the same as that in Eq. (11.30)
of the textbook with the coefficients

K̄11
ij =K

11
ij + 2πγ

Z
Ωe

µ
∂ψi
∂r

+
ψi
r

¶µ
∂ψj
∂r

+
ψj
r

¶
rdrdz

K̄12
ij =K

12
ij + 2πγ

Z
Ωe

µ
∂ψi
∂r

+
ψi
r

¶
∂φj
∂z

rdrdz

K̄22
ij =K

22
ij + 2πγ

Z
Ωe

∂φi
∂z

∂φj
∂z

rdrdz (6)

Problem 10.3: Write the fully discretized finite element equations of the finite
element models in Problems 10.1 and 10.2. Use the α-family of approximation.

Solution: The fully discretized models readily follow from Eqs. (10.5.30)—(10.5.32).

Problem 10.4: The equations governing unsteady slow flow of viscous,
incompressible fluids in the (x, y) plane can be expressed in terms of vorticity ζ
and stream function ψ:

ρ
∂ζ

∂t
− µ∇2ζ = 0, −2ζ −∇2ψ = 0

Develop the semidiscrete finite element model of the equations. Discuss the meaning
of the secondary variables. Use α-family of approximation to reduce the ordinary
differential equations to algebraic equations.

Solution: The weak forms of the equations are given by

0 =

Z
Ωe
w1

µ
ρ
∂ζ

∂t
− µ∇2ζ

¶
dv (1a)

=

Z
Ωe

µ
ρw1

∂ζ

∂t
+∇w1 ·∇ζ

¶
dv −

I
Γe
w1µ

∂ζ

∂n
ds (1b)

0 =

Z
Ωe
w2
³
ζ −∇2ψ

´
dv (2a)

=

Z
Ωe
(w2ζ +∇w2 ·∇ψ) dv −

I
Γe
w2

∂ψ

∂n
ds (2b)

Suppose that ws0(x) and φs(x) are approximated as

ζ(x) ≈
mX
j=1

ϕj(x)uj , ψ(x) ≈
nX
j=1

ψj(x)vj (3)

where uj are the nodal values of ζ and vj are nodal values of ψ. The finite element
model is given by∙

[M ] [0]
[0] [0]

¸½ {u̇}
{v̇}

¾
+

∙
[A] [0]
[B] [C]

¸½ {u}
{v}

¾
=

½ {P}
{Q}

¾
(4)
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where

Mij =

Z
Ωe

ρϕiϕj dv , Aij =

Z
Ωe
µ∇ϕi ·∇ϕj dv

Bij =

Z
Ωe

ψiϕj dv , Cij =

Z
Ωe
∇ψi ·∇ψj dv

Pi =

I
Γe
q1nϕi ds , Qi =

I
Γe
q2nψi ds (5)

q1n = µ
∂ζ

∂n
, q2n =

∂ψ

∂n
(6)

Problems 10.5—10.7 For the viscous flow problems given in Figs. P10.5—P10.7, give
the specified primary and secondary degrees of freedom and their values.

General comments The specified primary and secondary variables are clearly
indicated in the figures, and therefore they are obvious. In general, both velocity
components are zero on fixed walls, and shear stress is zero along the line of symmetry
(see the discussion in the text). Nodes on the inlet have zero vertical velocities and
specified horizontal velocities.

Figure P10.5

Solution of Problem 10.5: Horizontal velocity vx is known as unity at nodes 1, 6,
11, 19 and 27; vertical velocity vy is zero at nodes 1, 2, 3, 4, and 5, 10, 16, 17, 18
and 35 through 42; horizontal velocity is zero at nodes 5, 10, 16, 17, 18, 26, 34 and
42. The specified secondary variables are all zero: Fy = 0 at nodes 1, 6, 11, 19, 27;
Fy = 0 at nodes 1, 2, 3, 4, 26 and 34.

Solution of Problem 10.6: Horizontal velocity vx is known as zero at nodes 1—8,
15, 22, 29, 36, and 43—49; vertical velocity vy is zero at nodes 1—7 and it is vy = −1 at
nodes 43 through 49; The specified secondary variables are all zero: Fy = 0 at nodes
1, 8, 15, 22, 29 and 36; Fx = Fy = 0 at nodes 7, 14, 21, 28, 35 and 42.
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Figure P10.6

Figure P10.7

Solution of Problem 10.7: Vertical velocity component vy and horizontal stress tx
must be zero along the horizontal line of symmetry. Rest of the boundary conditions
are obvious.

Problem 10.8: Consider the flow of a viscous incompressible fluid in a square cavity
(Fig. P10.8). The flow is induced by the movement of the top wall (or lid) with
a velocity vx = sinπx. For a 5 × 4 mesh of linear elements, give the primary and
secondary degrees of freedom.

Figure P10.8
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Solution: All boundary conditions are on the primary variables. Except for the top,
all velocity componenst aloing the fixed walls are zero; along the top wall, vy = 0 and
vx(x) = sinπx.

Problem 10.9: Consider the flow of a viscous incompressible fluid in a 90◦ plane
tee. Using the symmetry and the mesh shown in Fig. P10.9. Write the specified
primary and secondary variables for the computational domain.

Figure P10.9

Solution: Vertical velocity component vy and horizontal stress tx must be zero along
the horizontal line of symmetry. Rest of the boundary conditions are obvious from
the figure (e.g., both velocity components are zero along the fixed wall).

Problem 10.10: Repeat Problem 10.9 for the geometry shown in Fig. P10.10.

Solution: Both velocity components are zero along the fixed wall; The velocities at
the left boundary are specified to be vx = 1 and vy = 0 (fully-developed flow); The
velocity vy = 0 at the right boundary. All specified secondary variables are zero
(Fx = 0 at the right boundary).
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Figure P10.10

New Problem 10.1: Consider the problem of (linear) bending of beams according
to the Euler—Bernoulli beam theory. The principle of minimum total potential energy
states that if the beam is in equilibrium then the total potential energy associated with
the equilibrium configuration is the minimum; i.e., the equilibrium displacements are
those which make the total potential energy a minimum. Thus, solving the equations
governing the equilibrium of the Euler—Bernoulli beam is equivalent to minimizing
the total potential energy

Π(u0, w0) =

Z xb

xa

∙
EA

2

µ
du0
dx

¶2
+
EI

2

Ã
d2w0
dx2

!2¸
dx

−
Z xb

xa
(fu0 + qw0) dx (1)

where u0 and w0 are the axial and transverse displacements. The necessary condition
for the minimum of a functional is that its first variation be zero: δΠ = 0, which
yields the governing equations of equilibrium. As you know, the statement δΠ = 0
is the same as the weak forms of the governing equations of the Euler—Bernoulli
beam theory. The weak form requires Hermite cubic interpolation of the transverse
deflection w0. Now suppose that we wish to relax the continuity required of the
interpolation used for w0(x) by introducing the relation

dwo
dx

= ϕ(x) (2)

Then the total potential energy functional takes the form

Π(u0, w0,ϕ) =

Z xb

xa

∙
EA

2

µ
du0
dx

¶2
+
EI

2

µ
dϕ

dx

¶2¸
dx

−
Z xb

xa
(fu0 + qw0) dx (3)
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Since the functional now contains only the first derivative of u0 and ϕ, Lagrange
(minimum, linear) interpolation can be used. Thus the original problem is replaced
with the following mathematical problem: ♣ Minimize Π(u0, w0,ϕ) in Eq. (3)
subjected to the constraint

dw0
dx
− ϕ(x) = 0 (4)

Develop the penalty function formulation of the constrained problem by deriving (a)
the weak form and (b) the finite element model.

Note: Much of the above discussion provides a background for the problem. The
statements beginning with the symbol ♣ are all that you need to answer.
Solution: The penalty functional is given by

ΠP (u0, w0,ϕ) =

Z xb

xa

∙
EA

2

µ
du0
dx

¶2
+
EI

2

µ
dϕ

dx

¶2¸
dx

−
Z xb

xa
(fu0 + qw0) dx+

γ

2

Z xb

xa

µ
dw0
dx
− ϕ(x)

¶2
dx (5)

The weak forms are given by setting δuI = 0, δwI = 0 and δφI = 0:

0 =

Z xb

xa

µ
EA

dδu0
dx

du0
dx
− fδu0

¶
dx (6a)

0 =

Z xb

xa

∙
γ

µ
dw0
dx
− ϕ

¶
dδw0
dx
− qδw0

¸
dx (6b)

0 =

Z xb

xa

∙
EI
dϕ

dx

dδϕ

dx
− γ

µ
dw0
dx
− ϕ

¶
δϕ

¸
dx (6c)

where (δu0, δw0, δϕ) can be viewed as the weight functins (w1, w2, w3).
The finite element model is given by setting

u0(x) ≈
mX
j=1

ujψ
(1)
j (x), w1 ≡ δu0 = ψ

(1)
i

w0(x) ≈
nX
j=1

wjψ
(2)
j (x), w2 ≡ δw0 = ψ

(2)
i

ϕ(x) ≈
pX
j=1

Xjψ
(3)
j (x), w3 ≡ δϕ = ψ

(3)
i (7)

We have ⎡⎣ [K11] [K12] [K13]
[K12]T [K22] [K23]
[K13]T [K23]T [K33]

⎤⎦⎧⎨⎩
{u}
{w}
{X}

⎫⎬⎭ =
⎧⎨⎩
{F 1}
{F 2}
{F 3}

⎫⎬⎭ (8)
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where

K11
ij =

Z xb

xa
EA

dψ
(1)
i

dx

dψ
(1)
j

dx
dx, K12

ij = 0, K13
ij = 0

K22
ij = γ

Z xb

xa

dψ
(2)
i

dx

dψ
(2)
j

dx
, K23

ij = −γ
Z xb

xa

dψ
(2)
i

dx
ψ
(3)
j dx

K33
ij =

Z xb

xa

⎛⎝EI dψ(3)i
dx

dψ
(3)
j

dx
+ γψ

(3)
i ψ

(3)
j

⎞⎠ dx
F 1i =

Z xb

xa
fψ

(1)
i dx, F 2i =

Z xb

xa
qψ

(2)
i dx, F 3i = 0 (9)
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Chapter 11

PLANE ELASTICITY

Problems 11.1—11.3: Compute the contribution of the surface forces to the global
force degrees of freedom in the plane elasticity problems given in Figs. P11.1—P11.3.
Give nonzero forces for at least two global nodes.

Problems 11.4—11.6: Give the connectivity matrices and the specified primary
degrees of freedom for the plane elasticity problems given in Figs. P11.1—P11.3. Give
only the first three rows of the connectivity matrix.

General Note: A pin-type connection implies that both components ux and uy
displacement are zero, whereas a roller support indicates the displacement un normal
to the wall is zero. In the following problems Ui and Vi denote the horizontal and
vertical displacements, respectively, at the global ith node of the mesh, and F xi and
F yi denotes the horizontal and vertical forces, respectively, at the global ith node of
the mesh.

Figure P11.1

Solution to Problems 11.1 and 11.4: The specified primary degrees of freedom
(i.e., displacements) are:

U1 = V1 = 0, U43 = V43 = 0, U8 = 0, U15 = 0, U22 = 0, U29 = 0, U36 = 0
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The specified secondary degrees of freedom (i.e., forces) with zero magnitudes are:

F x2 = F
y
2 = 0, F

x
3 = F

y
3 = 0, F

x
4 = F

y
4 = 0, F

x
5 = F

y
5 = 0, F

x
6 = F

y
6 = 0

F y7 = 0, F
x
44 = F

y
44 = 0, F

x
45 = F

y
45 = 0, F

x
46 = F

y
46 = 0

F x47 = F
y
47 = 0, F

x
48 = F

y
48 = 0, F

y
49 = 0

The nonzero (horizontal) forces at nodes 7, 14, 21, 28, 35, 42 and 49 can be computed
as follows. The procedure to calculate the nodal forces is the same as that used for
the calculation of nodal sources in Chapter 8 for single-variable problems, except
that the nodal values must be decomposed into the x and y components. Since the
distributed force is along the x coordinate, all nodal computed nodal forces are along
the x coordinate. Assume that p0 and p1 have the units of N/m (if they are taken as
N/m2, the final nodal values should be multiplied with the factor h = 5× 10−2m).
Note that a linearly varying force q of the type

q(s) = qe1 + (q
e
2 − qe1)(

s

Le
)

over an element ‘e’ of length Le, acting perpendicular to the length of the element,
results in the nodal values of

F e1 =
qe1Le
2

+
(qe2 − qe1)Le

2
× 1
3
=
qe1Le
3

+
qe2Le
6

F e2 =
qe1Le
2

+
(qe2 − qe1)Le

2
× 2
3
=
qe1Le
6

+
qe2Le
3

The above result can be used to find the nodal forces of the problem at hand.
First note that the variation of q(s) is q(s) = p1+(p0− p1)s/3, which can be used to
determine qe1 and q

e
2 of each line element (Le = 0.5). For example, the element between

global nodes 7 and 14 has the values: q
(1)
1 = p1 and q

(1)
2 = 5p1/6+p0/6. Similarly, the
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next element has the values: q
(2)
1 = q

(1)
2 = 5p1/6+p0/6 and q

(2)
2 = q

(3)
1 = 2p1/3+p0/3.

Hence, the horizontal forces at nodes 7 and 14, for example, are

F x7 =
p1
6
+
5p1 + p0
72

=
17p1 + p0

72

F x14 =

µ
p1
12
+
5p1 + p0
36

¶
+

µ
5p1 + p0
36

+
2p1 + p0
36

¶
=
5p1 + p0
12

Similarly, other values can be calculated
Alternatively, the nonzero (horizontal) forces at nodes 7, 14, 21, etc. can be

computed using the definition

Qei =

Z ya

yb

tx(y)ψ
e
1(y) dy

where Qei denotes the nodal force at node i of the element ‘e’, ψei denote the
interpolation functions of the element, and y is the global coordinate (with origin
at node 7). In the global coordinate system, with origin at node 7, the interpolation
functions are given by

ψe1(y) =
yb − y
Le

, ψe2(y) =
y − ya
Le

First, we note that the horizontal traction tx for the problem at hand is given by
q(y) = p1 + (p0 − p1)y/3. Then we have

F x7 = Q
x
7 =

Z 0.5

0
q(y)ψ

(1)
1 (y) dy =

Z 0.5

0

∙
p1 +

p0 − p1
3

y

¸
(1− 2y) dy

=
p1
4
+
p0 − p1
72

=
17p1 + p0

72

F x14 = Q
x
14 =

Z 0.5

0
tx(y)ψ

(1)
2 (y) dy +

Z 1

0.5
tx(y)ψ

(2)
1 (y) dy

=

Z 0.5

0

∙
p1 +

p0 − p1
3

y

¸
(2y)dy +

Z 1

0.5

∙
p1 +

p0 − p1
3

y

¸
2(1− y)dy

=
p1
4
+
p0 − p1
36

+

∙
p1
4
+ 2

µ
p0 − p1
18

¶¸
=
5p1 + p0
12

etc.
The connectivity matrix is given by (all that matters is the counterclockwise local

node numbering; the elements are numbered as in FEM2D mesh generator)

[B] =

⎡⎢⎢⎢⎢⎣
1 2 9 8
2 3 10 9
3 4 11 10
. . . . . . . . . . . .
8 9 16 15

⎤⎥⎥⎥⎥⎦
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Figure P11.2

Solution to Problems 11.2 and 11.5: The specified displacements are:

U1 = V1 = 0, U2 = V2 = 0, U3 = V3 = 0, U4 = V4 = 0, U5 = V5 = 0

The specified nonzero forces are:

F x25 =
4

5
F0 = 800 lbs. F y25 = −

3

5
F0 = 600 lbs.

F y33 = −
p0h

6
, F y34 = −

4p0h

6
, F y35 = −

2p0h

6
, F y36 = −

4p0h

6
, F y37 = −

p0h

6
The connectivity matrix is given by

[B] =

⎡⎢⎢⎣
1 3 11 9 2 7 10 6
3 5 13 11 4 8 12 7
9 11 19 17 10 15 18 14
. . . . . . . . . . . .

⎤⎥⎥⎦

Figure P11.3
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Solution to Problems 11.3 and 11.6: The specified displacements are

U1 = V1 = 0, U8 = V8 = 0, U12 = V12 = 0

The nonzero specified forces are (a = 2
√
5, cosα = 4/5 and sinα = 3/5)

Fx7 =
t0ha

6
cosα, F y7 =

t0ha

6
sinα, F x11 =

4th0a

6
cosα

F y11 =
4th0a

6
sinα, Fx16 =

th0a

6
cosα, F y16 =

th0a

6
sinα

The connectivity matrix is given by

[B] =

⎡⎣ 1 3 14 12 2 9 13 8
3 5 16 14 4 10 15 9
5 7 16 6 11 10 × ×

⎤⎦
Problem 11.7: Consider the cantilevered beam of length 6 cm, height 2 cm, thickness
1 cm, and material properties E = 3 × 107 N/cm2 and ν = 0.3, and subjected to
a bending moment of 600 N cm at the free end, (as shown in P11.7). Replace the
moment by an equivalent distributed force at x = 6 cm, and model the domain by
a nonuniform 10 × 4 mesh of linear rectangular elements and quadratic rectangular
elements. Identify the special displacements and global forces.

Figure P11.7

Solution: The specified displacements are:

U1 = 0, U6 = V6 = 0, U11 = 0

The specified nonzero forces are at nodes 11, 22, 33, 44 and 55. To calculate the
magnitude, assume that the force causing the moment is linear with y:

σxx = σ0
2y

b
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where the origin of the (x, y) coordinate system is taken at node 23, with x coordinate
horizontal and y coordinate vertical, and b = 2cm is the dimension along the
y−coordinate. Then we have

M0 =

Z b
2

− b
2

σxxy dy =
σ0b

2

6

Hence σ0 =
6M0
b2
= 900N/cm2. Then we can calculate the forces at nodes

Fx11 =

Z −b/4
−b/2

σxxψ
1
1dy = −

Z b/4

−b/2
σxx(1 + 4y/b)dy = −

5σ0b

48
= −187.50N

Fx22 =

Z −b/4
−b/2

σxx(4y/b+ 2)dy −
Z 0

−b/4
σxx(4y/b)dy = −

σ0b

12
− σ0b

24
= −225 N

Fx33 =

Z 0

−b/4
σxx(4y/b+ 1)dy +

Z b/4

0
σxx(1− 4y/b)dy = −

σ0b

48
+

σ0
48
= 0 N

By antisymmetry, we have F x44 = −F x22 and F x55 = −F x11.

Problem 11.8: Consider the (“transition”) element shown in Fig. P11.8. Define
the generalized displacement vector of the element by

{u} = {u1, v1,Θ1, u2, v2, u3, v3}T

and represent the displacement components u and v by

u = ψ1u1 + ψ2u2 + ψ3u3 +
b

2
ηψ1θ1, v = ψ1v1 + ψ2v2 + ψ3v3

where ψ1 is the interpolation function for the beam, and ψ2 and ψ3 are the
interpolation functions for nodes 2 and 3:

ψ1 =
1

2
(1− ξ), ψ2 =

1

4
(1 + ξ)(1− η), ψ3 =

1

4
(1 + ξ)(1 + η)

Derive the stiffness matrix for the element.

Figure P11.8
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Solution: The individual beam and plane elasticity (plane stress) element are shown
in the figure below. Both the plan stress and beam elements have the same height b
(not depicted in the figure below). Let us introduce the following nodal displacement
vector:

∆ = {u1 v1 = w2 θ2 = Θ1 u2 v2 u3 v3}T

The interpolation functions associated with nodes 2 and 3 are those of the plane
stress element and they are

ψ2(ξ, η) =
1

4
(1 + ξ) (1− η) , ψ3(ξ, η) =

1

4
(1 + ξ) (1 + η) (1)

Node 3 of Fig. P11.8 is a beam node that is connected to the plane stress element.
Its interpolation function is

ψ1(ξ, η) =
1

2
(1− ξ)

The finite element approximation of the displacements (ux, uy) of the transition
element are of the form

ux = u1ψ1 +
b

2
ηψ1Θ1 + u2ψ2 + u3ψ3, uy = v1ψ1 + v2ψ2 + v3ψ3 (2)

Then Ψ of Eq. (11.4.2) becomes

Ψ =

∙
ψ1 0 0.5bηψ1 ψ2 0 ψ3 0
0 ψ1 0 0 ψ2 0 ψ3

¸
∆ = {u1 v1 Θ1 u2 v2 u3 v3 }T

(3)

The coordinate transformation is given by the usual expression, with the coordinates
x1 = x4 = 0, x2 = x3 = h, y1 = y2 = 0, and y3 = y4 = b:

x =
4X
i=1

xiψi =
h

2
(1 + ξ) , y =

4X
i=1

yiψi =
b

2
(1 + η) (4)
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Note that the Jacobian matrix and its inverse are

J =

"
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

#
=

∙ h
2 0

0 b
2

¸
, J−1 =

∙ 2
h 0

0 2
b

¸

and the transformation between (x, y) and (ξ, η) is given by( ∂ψei
∂x
∂ψei
∂y

)
= [J ]−1

( ∂ψei
∂ξ
∂ψei
∂η

)
=

∙ 2
h 0

0 2
b

¸( ∂ψei
∂ξ
∂ψei
∂η

)
(5)

Finally, matrix B required to evaluate the stiffness matrix in (11.4.9) can be
computed using Eq. (11.4.4):

B = DΨ =

⎡⎢⎣
∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x

⎤⎥⎦ ∙ψ1 0 0.5bηψ1 ψ2 0 ψ3 0
0 ψ1 0 0 ψ2 0 ψ3

¸

=

⎡⎢⎣
2
h

∂
∂ξ 0

0 2
b

∂
∂η

2
b

∂
∂η

2
h

∂
∂ξ

⎤⎥⎦∙ψ1 0 0.5bηψ1 ψ2 0 ψ3 0
0 ψ1 0 0 ψ2 0 ψ3

¸

=

⎡⎣− 1h 0 − b
2hη

1
2h(1− η) 0 1

2h(1 + η) 0

0 0 0 0 − 1
2b(1 + ξ) 0 1

2b(1 + ξ)

0 − 1h
1
2(1− ξ) − 1

2b(1 + ξ) 1
2h(1− η) 1

2b(1 + ξ) 1
2h(1 + η)

⎤⎦
(6)

Problem 11.9: Consider a square, isotropic, elastic body of thickness h shown in
Fig. P11.9. Suppose that the displacements are approximated by

ux(x, y) = (1− x)yu1x + x(1− y)u2x, uy(x, y) = 0

Assuming that the body is in a plane state of stress, derive the 2× 2 stiffness matrix
for the unit square

[K]

½
u1x
u2x

¾
=

½
F1
F2

¾

Figure P11.9
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Solution: The interpolation functions are ψ1(x, y) = (1 − x)y, ψ2 = (1 − y)x.
Obviously, the 2D element has just 2 nodes (diagonally opposite sides of the unit
square) The element stiffness matrix is given by

[K] =
(α+ β)h

6

∙
2 −1
−1 2

¸
, α =

E

1− ν2
, β =

E

2(1 + ν)

Problems 11.10—11.14: For the plane elasticity problems shown in Figs. P11.10—
11.16, give the boundary degrees of freedom and compute the contribution of the
specified forces to the nodes.

Solution to Problem 11.10: Note that the element is a quadratic element. The
distributed force per unit length (along the y−axis) is τ0 = 3h kN/cm, where thickness
of the body is h = 1 cm. The specified non-zero nodal loads are (height b = 2 cm)

F y7 =
τ0b

6
= 1, 000N, F y11 =

4τ0b

6
= 4, 000N, F y18 =

τ0b

6
= 1, 000N

The specified nodal displacements are

U1 = V1 = U8 = V8 = U12 = V12 = 0

Figure P11.10

Solution to Problem 11.11: This has two parts. For (a), ux = 0 along the vertical
line of symmetry and uy = 0 along the horizontal line of symmetry. The specified
nonzero forces are computed using the formula

FxI = −
p0h

2
, F xJ = −p0h

where I is an end node, J is an interior node, and h is the element length along the
force.
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Figure P11.11

For (b), ux = 0 along the vertical line of symmetry (i.e., nodes 18, 26, 34 and
42) and uy = 0 along the horizontal line of symmetry (i.e., nodes 1 through 5). The
specified nonzero forces are computed using the formula

FxI = −
p0h

2
, F xJ = −p0h

where I is an end node (I = 1 and 35), J is an interior node (J = 6, 11, 19 and 27),
and h is the element length along the force.

Solution to Problem 11.12: The specified displacements are obvious from the
figure (U1 = V1 = · · · = U9 = V9 = 0). The nonzero specified forces are (h = 0.75 m)

F y37 = −
0.75p0
2

= −37.5 kN, F y38 = −75 kN, F
y
39 = −75 kN

F y40 = −75 kN, F
y
41 = −37.5 kN

Figure P11.12

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.



One quadrant of the domain is used in the finite 
element analysis (isotropic plate of thickness h)

y

x

p0   (psi)

a

2b

••

•
••

•• •

•
••

••• • •
• •

•1 2 3 4

8

19

59
11

17 18

13
6 7

16
15

14 12

10

1 1
4

2 31

6
7

8
9 1012

11

Rigid walls

c
πs

pty 2
sin0−=

c

s

x

y

b

a

b

in3in4in5                          

lb/ft200in,1

0.3 psi,103strain Plane

0

7

 , c  , b  a

ph

E

===

==
=×= ν

SOLUTIONS MANUAL 335

Solution to Problem 11.13: By symmetry, the displacement component ux on
x = 0 is zero and the displacement component uy on y = 0 is zero. Hence, the known
displacements are

V1 = V2 = V3 = V4 = 0, U14 = U15 = U16 = 0

The non-zero known forces are

Fx4 =
p0hb

4
, F x8 =

p0hb

2
, F x19 =

p0hb

4

Figure P11.13

Figure P11.14

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.



336 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

Solution to Problem 11.14: The horizontal displacement ux along the line of
symmetry must be zero. Both displacement components are zero along the fixed
walls. The only nonzero forces are at the five nodes under the sinusoidal load. They
can be computed using

F eyi =

Z sb

sa
ty(s)ψ

e
i (s) ds

where ψei are the 1-D interpolation functions

ψ1(s) =
sb − s
he

, ψ2(s) =
s− sa
he

The following integrals are usefulZ
sin as ds = −1

a
cos as,

Z
s sin as ds =

1

a2
sin as− s

a
cos as

We obtain (a = π/2c)

F ey1 = −
p0
he

Z sb

sa
sin as (sb − s) ds = −

p0
he

∙
−sb
a
cos as− 1

a2
sin as+

s

a
cos as

¸sb
sa

= −p0
he

∙
−4c

2

π2

µ
sin

πsb
2c
− sin πsa

2c

¶
+
2c

π

µ
sb cos

πsb
2c
− sa cos

πsa
2c

¶
− 2csb

π

µ
cos

πsb
2c
− cos πsa

2c

¶¸
F ey2 = −

p0
he

Z sb

sa
sin as (s− sa) ds = −

p0
he

∙
1

a2
sin as− s

a
cos as+

sa
a
cos as

¸sb
sa

= −p0
he

∙
4c2

π2

µ
sin

πsb
2c
− sin πsa

2c

¶
− 2c

π

µ
sb cos

πsb
2c
− sa cos

πsa
2c

¶
+
2csa
π

µ
cos

πsb
2c
− cos πsa

2c

¶¸
The global forces are obtained as

Fy1 = F
1
1y, Fy2 = F

1
2y + F

2
1y, . . .
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Chapter 12

BENDING OF
ELASTIC PLATES

Problem 12.1: Investigate the displacement and slope compatibility of the
nonconforming rectangular element CPT(N). Hint: Use the edge connecting nodes 1
and 2 and check if the displacement w and slopes ∂w/∂x and ∂w/∂y are continuous.

Solution: Consider the interface 1—2 between element A and element B (see the figure
below). The displacement w and slopes θx = ∂w/∂x and θy = ∂w/∂y along this edge
are [from Eq. (12.2.24)]

w(x, 0) = a1 + a2x+ a5x
2 + a9x

3µ
∂w

∂x

¶
y=0

= a2 + 2a5x+ 3a9x
2

µ
∂w

∂y

¶
y=0

= a3 + a4x+ a7x
2 + a11x

3

Since there are four degrees of freedom, (w, θx) at each node, along the edge 1—2, w
is uniquely determined by the four conditions from both elements and therefore it is
continuous across the interface. Thus, a1, a2, a5 and a9 are uniquely determined in
terms of w1, w2, θx1 and θx2. This also implies that θx is also uniquely defined along
the interface. This cannot be said about θy since the expression for θy contains 4
constants that are not determined by the four degrees of freedom (w1, θx1, w2, θx2).
There are only two other conditions, namely (θy1, θy2), available at the two nodes on
the interface 1—2, whereas there are 4 constants. Thus, the slope θy normal to the
edge 1—2 is not uniquely defined along the edge 1—2.
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Problems 12.2—12.10: For the plate bending problems (CPT and SDT) given in
Figs. P12.2—P12.10, give the specified primary and secondary degrees of freedom and
their values for the meshes shown. The dashed lines in the figures indicate simply
supported boundary conditions Use E, ν, h, a, and b in formulating the data. You
are required to give values of the loads for at least a couple of representative loads.

Figure P12.2

Solution to Problem 12.2: For CPT, use ∂w
∂x in place of φx and

∂w
∂y in place of φy.

Use symmetry about x = 0 line. All primary degrees of freedom are zero along the
y = 0 line (fixed edge); w = 0 and ∂w

∂x or φx = 0 along the symmetry line (i.e., x = 0

line). Nodal forces at the y = 10 in. line for FSDT are given by q0h
2 at the outside

nodes and q0h at the inner nodes, h is the element length parallel to the x-axis).
Thus, we have F7 = F9 = 750 lb and F8 = 1, 500 lb.
For CPT (N) we have (using the load vector of the Euler—Bernoulli beam element)

F7 = F9 = 750 lb, F8 = 1, 500 lb, Mx7 = −312.5 lb-in., My8 = 0 lb-in., and
Mx9 = 312.5 lb-in.

Figure P12.3
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Solution to Problem 12.3: The specified displacement degrees of freedom are

w3 = w6 =w7 = w8 = w9 = 0; θx1 = θx4 = θx7 = θx8 = θx9 = 0

θy1 = θy2 = θy3 = θy6 = θy9 = 0, θxy1 = 0

For SDT, use φx in place of θx =
∂w
∂x and φy in place of θy =

∂w
∂y in place of φy.

In SDT, the load vector of uniformly loaded nine-node element can be obtained
from the tensor product of the load vectors of 1-D quadratic elements. The load
vector of a 1-D quadratic element of length hx with uniform load q0 is

q0hx
6

⎧⎨⎩
1
4
1

⎫⎬⎭
Hence the load vector for a nine-node quadratic element with uniform load is

q0hx
6

⎧⎨⎩
1
4
1

⎫⎬⎭ hy6
⎧⎨⎩
1
4
1

⎫⎬⎭
T

=
q0hxhy
36

⎡⎣ 1 4 1
4 16 4
1 4 1

⎤⎦
Thus, for the SDT, the loads at different nodes are (hx = a/4 and hy = b/4)

F1 =
q0ab

576
, F2 =

4q0ab

576
, F3 =

2q0ab

576
, F4 =

4q0ab

576
, F5 =

q0ab

576

F6 =
4q0ab

576
, F7 =

16q0ab

576
, F8 =

8q0ab

576
, F9 =

16q0ab

576
, F10 =

4q0ab

576

F11 =
2q0ab

576
, F12 =

8q0ab

576
, F13 =

4q0ab

576
, F14 =

8q0ab

576
, F15 =

2q0ab

576

etc.
For the CPT(C) element, the given mesh must be interpreted as a 2 × 2 mesh

of four-node elements (a total of nine nodes). The load vector of uniformly loaded
four-node element (of sides hx and hy) can be obtained from the tensor product of
the load vectors of 1-D Euler—Bernoulli beam elements. The load vector of an Euler—
Bernoulli beam element of length hx with uniform load q0 is (the rotations used in
plate bending do not include the negative sign)

q0hx
12

⎧⎪⎪⎨⎪⎪⎩
6
hx
6
−hx

⎫⎪⎪⎬⎪⎪⎭
Hence, the load vector for a four-node Hermite cubic element with uniform load is

q0hx
12

⎧⎪⎪⎨⎪⎪⎩
6
hx
6
−hx

⎫⎪⎪⎬⎪⎪⎭
hy
12

⎧⎪⎪⎨⎪⎪⎩
6
hy
6
−hy

⎫⎪⎪⎬⎪⎪⎭
T

=
q0hxhy
144

⎡⎢⎢⎣
36 6hy 36 −6hy
6hx hxhy 6hx −hxhy
36 6hy 36 −6hy
−6hx −hxhy −6hx hxhy

⎤⎥⎥⎦
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The 2 × 2 submatrix of coefficients (there are four such submatrices) correspoind to
the four degrees (Qn,Mx,My,Mxy) of freedom at the node. Thus, at node 1 we have
(hx = a/4 and hy = b/4)

Q1 =
q0ab

64
, Mx1 =

q0a
2b

64× 24 , My1 =
q0ab

2

64× 24 , Mxy1 =
q0a

2b2

256× 144
At node 2 we have

Q2 =
72q0ab

16× 144 , Mx2 = 0, My2 = −
12q0ab

2

64× 144 , Mxy2 = 0

At node 5, we have

Q5 =
4× 36q0ab
16× 144 , Mx5 = 0, My5 = 0, Mxy5 = 0

and so on.

Figure P12.4

Solution to Problem 12.4: The specified primary degrees of freedom in CPT(C)
are

w1 = w6 = w11 = 0, θy1 = θy6 = θy11 = θy12 = θy13 = θy14 = θy15 = 0

θx1 = θx2 = θx3 = θx4 = θx5 = θx6 = θx11 = 0

For SDT replace θx with φy and θy with φy.
As for the load vector, we have a load that varies linearly with the x-ccordinate.

On a typical element, the load varies in the natural coordinate system as (see the
figure below)

q(ξ, η) = q1ψ1(ξ) + q2ψ2(ξ), ψ1(ξ) =
1

2
(1− ξ), ψ2(ξ) =

1

2
(1 + ξ)
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Thus, the load vector components at nodes 1 and 2 of the SDT element are (F e4 = F
e
1

and F e2 = F
e
4 )

F e1 =
hy
2

µ
qe1hx
2

+
(qe2 − qe1)hx

6

¶
=
hy
2

µ
qe1hx
3

+
qe2hx
6

¶
F e2 =

hy
2

µ
qe1hx
2

+
2(qe2 − qe1)hx

6

¶
=
hy
2

µ
qe1hx
6

+
qe2hx
3

¶
For example, we have

F1 = 0.5F6 = F11 =
q0hy
2

µ
hxhx
6a

¶
=
q0ab

384

F2 = 0.5F7 = F12 =
q0hy
2

µ
hxhx
3a

¶
+
q0hy
2

µ
hxhx
3a

+
hxhx
3a

¶
=
q0ab

64

F3 = 0.5F8 = F13 =
q0hy
2

µ
hxhx
6a

+
2hxhx
3a

¶
+
q0hy
2

µ
2hxhx
3a

+
3hxhx
6a

¶
=
q0ab

32

For the CPT(N) element, the load vector can be computed using the load vector

of a Euler—Bernoulli beam element foir linearly varying load (see Example 5.2.1). We

have

q0hx
a

⎧⎪⎨⎪⎩
9hx + 30xa
hx(2hx + 5xa)
21hx + 30xa

−hx(3hx + 5xa)

⎫⎪⎬⎪⎭ hy
12

⎧⎪⎨⎪⎩
6
hy
6
−hy

⎫⎪⎬⎪⎭
T

=
q0hxhy
12a

⎡⎢⎣ 6(9hx + 30xa) hy(9hx + 30xa) 6(9hx + 30xa) −hy(9hx + 30xa)
6hx(2hx + 5xa) hyhx(2hx + 5xa) −6hx(2hx + 5xa) hyhx(2hx + 5xa)
6(21hx + 30xa) hy(21hx + 30xa) 6(21hx + 30xa) −hy(21hx + 30xa)
6hx(3hx + 5xa) hyhx(3hx + 5xa) 6hx(3hx + 5xa) −hyhx(3hx + 5xa)

⎤⎥⎦
Hence, the loads at node 1, for example, are

Q1 =
9q0ab

64
, Mx1 =

q0a
2b

128
, My1 =

3q0ab
2

64
, Mxy1 =

q0a
2b2

1536
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Solution to Problem 12.5: The boundary conditions on the primary variables are

w3 = w6 = w9 = 0, θy1 = θy2 = θy3 = 0, θx7 = θy8 = θy9 = 0

The tangential moment Mrθ = 0 can be prescribed only as a multipoint constraint
(between Mn and Ms).

The specified forces in SDT are

F1 =
Q0L14
2

, F4 =
Q0L14
2

+
Q0L47
2

, F7 =
Q0L47
2

where Lij denote the distance between node i and node j of the mesh. The loads
for the CPT(N) can be computed using the load vector of the Euler—Bernoulli beam
element, where Lij replaces the element length.

Figure P12.5

Figure P12.6
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Solution to Problem 12.6: The boundary conditions on the primary variables are
(same as in Problem 12.5)

w3 = w6 = w9 = 0, θy1 = θy2 = θy3 = 0, θx7 = θy8 = θy9 = 0

The tangential moment Mrθ = 0 can be prescribed only as multipoint constraints
(between Mn and Ms).

The specified forces in SDT are

F1 =
q0A1
4
, F2 =

q0A1
4

+
q0A2
4
, F3 =

q0A2
4
, F5 =

q0(A1 +A2 +A3 +A4)

4

and so on. Here Ai denote the areas of the quadrilateral elements. The loads for the
CPT(N) can be computed using the load vector definition and they must be evaluated
only numerically.

Figure P12.7

Solution to Problem 12.7: The boundary conditions on the primary variables are

wi = θxi = θyi = 0, for i = 1, 2, . . . , 5 and i = 21, 22, . . . , 25

The tangential moment Mns = 0 along the slant edges can be prescribed only as
multipoint constraints.

The specified forces in SDT can be obatined by first noting that

qei =
q0Ai
4
, where Ai is the areaf the ith element
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Then the forces can be easily obtained by inspection of the mesh; for example, we
have

F1 = q
1
1, F2 = q

1
2 + q

2
1, F7 = q

1
3 + q

2
4 + q

5
2 + q

6
1

and so on. The loads for the CPT(N) can be computed using the load vector definition
and they must be evaluated only numerically.

Solution to Problem 12.8: The boundary conditions on the primary variables are

wi = θxi = θyi = 0, for i = 3, 6, 9; θy1 = θy2 = 0

θx1 = θx4 = θx7 = θx8 = 0; w7 = w8 = 0

Figure P12.8

The specified forces at the nodes in CPT(N) can be determined as in Problem
12.2. For SDT, they are

F1 =
q0hxhy
4

, F2 =
q0hxhy
2

, F4 =
q0hxhy
2

, F1 = q0hxhy

where hx = 5 in. and hy = 3.75 in.
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Figure P12.9

Solution to Problem 12.10: The boundary conditions on the primary variables
are

wi = θxi = θyi = 0, for i = 1, 7, 14, 21

θy1 = θy2 = θy3 = θy4 = θy5 = θy6 = 0

The specified forces at the nodes in SDT and CPT(N) can be determined as in
Problem 12.8.

Figure P12.10
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Chapter 13

COMPUTER IMPLEMENTATION OF
TWO-DIMENSIONAL PROBLEMS

Note that most of the problems may be analyzed using FEM2D. The results obtained
from the program should be evaluated for their accuracy in the light of analytical
solutions for qualitative understanding of the solution of the problem. New problems
can be generated from those given here by changing the problem data, mesh, type of
element, etc. For time-dependent problems, the time step and number of time steps
should be chosen such that the solution pattern is established or a steady state is
reached. When specific material properties are not given, use values such that the
solution can be interpreted as the nondimensional solution of the problem.

Additional Note: Solutions to only selected problems are included here for two
reasons: (1) it will take lot of space to include the computer input data and output
files for each of the problem; (2) many problems are similar and there is only a change
of data.

Problems 13.1 and 13.2: Investigate the convergence of solutions to Problem 8.18
using 2 × 2, 4 × 4, and 8 × 8 meshes of linear triangular elements, and compare the
results (in graphical or tabular form) with the analytical solution.

Solution: Input file for the 8× 8 mesh of triangles is presented in Box 13.1 and the
results are summarized in Table 13.1.

Table 13.1: Comparison of the finite element solutions u(0, y) with the analytical
solution.

Triangular elem. Rectangular elem. Analytical
y Mesh T2 Mesh T4 Mesh T8 Mesh R2 Mesh R4 Mesh R8 Solution

0.125 −− −− 0.0355 −− −− 0.0343 0.0351
0.250 −− 0.0797 0.0764 −− 0.0703 0.0740 0.0757
0.375 −− −− 0.1291 −− −− 0.1255 0.1280
0.500 0.2303 0.2080 0.2015 0.1520 0.1895 0.1969 0.2002
0.625 −− −− 0.3050 −− −− 0.2996 0.3034
0.750 −− 0.4630 0.4554 −− 0.4410 0.4499 0.4538
0.875 −− −− 0.6758 −− −− 0.6716 0.6746

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.
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Box 13.1: Input data for program FEM2D (shown only for 8 × 8 mesh of
triangles).

It is clear that meshes of triangular elements give more accurate results for the
number of nodes. This is due to the fact that there are two triangles per a rectangle,
thereby provides greater flexibility in approximating the solution. Also, note that
the solution predicted by triangles converges from the top while that provided by
the rectangular elements converges from the bottom. This means that the triangle
underestimates the “stiffness” while the rectangular element overestimates it.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Prob 13.1:  Laplace equation on a square (Problem 8.18: 8 by 8 mesh)
    0   2   0   0                                ITYPE,IGRAD,ITEM,NEIGN
    0   3   1   0                                IELTYP,NPE,MESH,NPRNT
    8   8                                        NX,NY
    0.0  0.0625 0.0625 0.0625 0.0625
         0.0625 0.0625 0.0625 0.0625             X0,DX(I)
    0.0  0.125  0.125  0.125  0.125
         0.125  0.125  0.125  0.125              Y0,DY(I)
    25                                           NSPV
    1 1     2 1     3 1     4 1     5 1     6 1     7 1
    8 1     9 1    18 1    27 1    36 1    45 1    54 1
   63 1    72 1    73 1    74 1    75 1    76 1    77 1
   78 1    79 1    80 1    81 1                  ISPV(I,J)
    0.0     0.0     0.0     0.0     0.0     0.0     0.0
    0.0     0.0     0.0     0.0     0.0     0.0     0.0
    0.0     0.0     1.0   0.98079 0.92388 0.83147 0.7071
  0.55557 0.38268 0.19510   0.0                  VSPV(I)
    0                                            NSSV
    1.0   0.0  0.0                               A10, A1X, A1Y
    1.0   0.0  0.0                               A20, A2X, A2Y
    0.0                                          A00
    0                                            ICONV
    0.0  0.0  0.0                                F0,  FX,  FY
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Problem 13.5: Investigate the convergence of the solution to Problem 8.23 using
2× 2, 4× 4, and 8× 8 meshes of linear triangular elements and equivalent meshes of
quadratic triangular elements.

Solution: If FEM2D is to generate the mesh, we must use the total domain. If the
mesh can be read in, then one can exploit the diagonal symmetry of the problem.
Here we use the option to generate the mesh by the program FEM2D. The input
data and partial output for 4× 4 mesh of quadratic triangular elements is presented
in Box 13.5.

Box 13.5: Input data and partial output for program FEM2D (shown only for
4× 4 mesh of quadratic triangles).

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

   Prob. 13.5 Laplace equation on a square (Problem 8.18: 4 by 4 T6 mesh)
    0   2   0   0                                ITYPE,IGRAD,ITEM,NEIGN
    0   6   1   0                                IELTYP,NPE,MESH,NPRNT
    4   4                                        NX,NY
    0.0  0.25  0.25  0.25  0.25                  X0,DX(I)
    0.0  0.25  0.25  0.25  0.25                  Y0,DY(I)
    32                                           NSPV
    1 1     2 1     3 1     4 1     5 1     6 1     7 1
    8 1     9 1    10 1    18 1    19 1    27 1    28 1
   36 1    37 1    45 1    46 1    54 1    55 1    63 1
   64 1    72 1    73 1    74 1    75 1    76 1    77 1
   78 1    79 1    80 1    81 1                  ISPV(I,J)
    0.0      0.015625 0.0625  0.140625 0.25   0.390625
    0.5625   0.765625 1.0     0.015625 0.875  0.0625
    0.75     0.140625 0.625   0.25     0.5    0.390625
    0.375    0.5625   0.25    0.765625 0.125  1.0
    0.875    0.75     0.625   0.5      0.375  0.25
    0.125    0.0                                 VSPV(I)
    0                                            NSSV
    1.0   0.0  0.0                               A10, A1X, A1Y
    1.0   0.0  0.0                               A20, A2X, A2Y
    0.0                                          A00
    0                                            ICONV
    2.0   0.0  0.0                               F0,  FX,  FY

      11   0.12500E+00   0.12500E+00   0.11449E+00
      12   0.25000E+00   0.12500E+00   0.19773E+00
      13   0.37500E+00   0.12500E+00   0.28288E+00
      14   0.50000E+00   0.12500E+00   0.37869E+00
      15   0.62500E+00   0.12500E+00   0.48802E+00
      16   0.75000E+00   0.12500E+00   0.61111E+00
      17   0.87500E+00   0.12500E+00   0.74359E+00

Node                 x                                   y                                 u(x,y)
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Problem 13.6: Repeat Problem 13.5 using rectangular elements.

Solution: The input data and partial output for 4 × 4 mesh of quadratic rectagular
elements is presented in Box 13.6.

Box 13.6: Input data and partial output for program FEM2D (shown only for
4× 4 mesh of quadratic rectangles).

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

   Prob. 13.6 Laplace equation on a square (Problem 8.18: 4 by 4 Q9 mesh)
    0   2   0   0                                ITYPE,IGRAD,ITEM,NEIGN
    2   9   1   0                                IELTYP,NPE,MESH,NPRNT
    4   4                                        NX,NY
    0.0  0.25  0.25  0.25  0.25                  X0,DX(I)
    0.0  0.25  0.25  0.25  0.25                  Y0,DY(I)
    32                                           NSPV
    1 1     2 1     3 1     4 1     5 1     6 1     7 1
    8 1     9 1    10 1    18 1    19 1    27 1    28 1
   36 1    37 1    45 1    46 1    54 1    55 1    63 1
   64 1    72 1    73 1    74 1    75 1    76 1    77 1
   78 1    79 1    80 1    81 1                  ISPV(I,J)
    0.0      0.015625 0.0625  0.140625 0.25   0.390625
    0.5625   0.765625 1.0     0.015625 0.875  0.0625
    0.75     0.140625 0.625   0.25     0.5    0.390625
    0.375    0.5625   0.25    0.765625 0.125  1.0
    0.875    0.75     0.625   0.5      0.375  0.25
    0.125    0.0                                 VSPV(I)
    0                                            NSSV
    1.0   0.0  0.0                               A10, A1X, A1Y
    1.0   0.0  0.0                               A20, A2X, A2Y
    0.0                                          A00
    0                                            ICONV
    2.0   0.0  0.0                               F0,  FX,  FY

      11   0.12500E+00   0.12500E+00   0.11646E+00
      12   0.25000E+00   0.12500E+00   0.19820E+00
      13   0.37500E+00   0.12500E+00   0.28335E+00
      14   0.50000E+00   0.12500E+00   0.37888E+00
      15   0.62500E+00   0.12500E+00   0.48838E+00
      16   0.75000E+00   0.12500E+00   0.61144E+00
      17   0.87500E+00   0.12500E+00   0.74492E+00

Node                 x                                   y                                 u(x,y)

      20   0.12500E+00   0.25000E+00   0.19820E+00
      21   0.25000E+00   0.25000E+00   0.29914E+00
      22   0.37500E+00   0.25000E+00   0.38343E+00
      23   0.50000E+00   0.25000E+00   0.46224E+00
      24   0.62500E+00   0.25000E+00   0.54055E+00
      25   0.75000E+00   0.25000E+00   0.61861E+00
      26   0.87500E+00   0.25000E+00   0.69170E+00
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Problem 13.7: Analyze the axisymmetric problem in Problem 8.26 using 4× 1 and
8× 1 linear rectangular elements, and compare the solution with the exact solution.

Solution: The input data and partial output for the two meshes are presented in
Boxes 13.7(a) and 13.7(b). The exact solution is in the solution to Problem 8.26.
The exact values at r = 0.0, 0.005, 0.01, 0.015, and 0.02 are T1 = 150.0, T2 = 146.875,
T3 = 137.50, and T4 = 121.875.

Box 13.7(a): Input data and partial output for program FEM2D for 4× 1 mesh of
rectangles.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Prob 13.7:  An axisymmetric problem (4x1 mesh of rectangles)
    0   2   0   0                       ITYPE,IGRAD,ITEM,NEIGN
    1   4   1   1                       IELTYP,NPE,MESH,NPRNT
    4   1                               NX, NY
    0.0  0.005  0.005  0.005  0.005     X0, DX(I)
    0.0  1.0                            Y0, DY(1)
    2                                   NSPV
    5 1    10 1                         ISPV(I,J)
    100.0  100.0                        VSPV(I)
    0                                   NSSV
    0.0   20.0  0.0                     A10, A1X, A1Y
    0.0   20.0  0.0                     A20, A2X, A2Y
    0.0                                 A00
    0                                   ICONV
    0.0  1.0E07  0.0                    F0,  FX,  FY

      Node    x-coord.      y-coord.    Primary DOF
  
       1   0.00000E+00   0.00000E+00   0.15175E+03
       2   0.50000E-02   0.00000E+00   0.14758E+03
       3   0.10000E-01   0.00000E+00   0.13786E+03
       4   0.15000E-01   0.00000E+00   0.12202E+03
       5   0.20000E-01   0.00000E+00   0.10000E+03
       6   0.00000E+00   0.10000E+01   0.15175E+03
       7   0.50000E-02   0.10000E+01   0.14758E+03
       8   0.10000E-01   0.10000E+01   0.13786E+03
       9   0.15000E-01   0.10000E+01   0.12202E+03
      10   0.20000E-01   0.10000E+01   0.10000E+03
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Box 13.7(b): Input data and partial output for program FEM2D for 8× 1 mesh of
rectangles.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

    Prob 13.7:  An axisymmetric problem (8x1 mesh of rectangles)
    0   2   0   0                         ITYPE,IGRAD,ITEM,NEIGN
    1   4   1   2                         IELTYP,NPE,MESH,NPRNT
    8   1                                 NX, NY
    0.0  0.0025  0.0025  0.0025  0.0025
         0.0025  0.0025  0.0025  0.0025   X0, DX(I)
    0.0  1.0                              Y0, DY(1)
    2                                     NSPV
    9 1    18 1                           ISPV(I,J)
    100.0  100.0                          VSPV(I)
    0                                     NSSV
    0.0   20.0  0.0                       A10, A1X, A1Y
    0.0   20.0  0.0                       A20, A2X, A2Y
    0.0                                   A00
    0                                     ICONV
    0.0  1.0E07  0.0                      F0,  FX,  FY

     Node    x-coord.      y-coord.    Primary DOF

       1   0.00000E+00   0.00000E+00   0.15053E+03
       2   0.25000E-02   0.00000E+00   0.14948E+03
       3   0.50000E-02   0.00000E+00   0.14705E+03
       4   0.75000E-02   0.00000E+00   0.14310E+03
       5   0.10000E-01   0.00000E+00   0.13759E+03
       6   0.12500E-01   0.00000E+00   0.13053E+03
       7   0.15000E-01   0.00000E+00   0.12191E+03
       8   0.17500E-01   0.00000E+00   0.11174E+03
       9   0.20000E-01   0.00000E+00   0.10000E+03
      10   0.00000E+00   0.10000E+01   0.15053E+03
      11   0.25000E-02   0.10000E+01   0.14948E+03
      12   0.50000E-02   0.10000E+01   0.14705E+03
      13   0.75000E-02   0.10000E+01   0.14310E+03
      14   0.10000E-01   0.10000E+01   0.13759E+03
      15   0.12500E-01   0.10000E+01   0.13053E+03
      16   0.15000E-01   0.10000E+01   0.12191E+03
      17   0.17500E-01   0.10000E+01   0.11174E+03
      18   0.20000E-01   0.10000E+01   0.10000E+03
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Problem 13.9: Analyze Problem 8.18 for eigenvalues (take c = 1.0), using a 4 × 4
uniform mesh of triangular elements. Calculate the critical time step for a parabolic
equation.

Solution: The input data file and edited output for the problem are presented in Box
13.9. The critical time step is ∆tcr = 2/920.9 = 2.172× 10−3.

Box 13.9: Input data and edited output for 4× 4 mesh of triangles (eigenvalue
problem).

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

Prob 13.9:  Eigenvalues of a Laplace equation (4by4 T3 mesh)
    0   2   1   1                        ITYPE,IGRAD,ITEM,NEIGN
    12  1                                NVALU, NVCTR
    0   3   1   0                        IELTYP,NPE,MESH,NPRNT
    4   4                                NX,NY
    0.0  0.125 0.125 0.125 0.125         X0,DX(I)
    0.0  0.25  0.25  0.25  0.25          Y0,DY(I)
    13                                   NSPV
    1 1  2 1  3 1   4 1  5 1  10 1  15 1
   20 1 21 1 22 1  23 1 24 1  25 1       ISPV(I,J)
    1.0   0.0  0.0                       A10, A1X, A1Y
    1.0   0.0  0.0                       A20, A2X, A2Y
    0.0                                  A00
    0                                    ICONV
    1.0  0.0  0.0                        C0,  CX,  CY

    S O L U T I O N :
        Number of Jacobi iterations ..... NROT = 217
        E I G E N V A L U E (  1) =   0.920904E+03
        E I G E N V A L U E (  2) =   0.869250E+03
        E I G E N V A L U E (  3) =   0.742104E+03
        E I G E N V A L U E (  4) =   0.626822E+03
        E I G E N V A L U E (  5) =   0.496488E+03
        E I G E N V A L U E (  6) =   0.372089E+03
        E I G E N V A L U E (  7) =   0.323778E+03
        E I G E N V A L U E (  8) =   0.198632E+03
        E I G E N V A L U E (  9) =   0.147678E+03
        E I G E N V A L U E ( 10) =   0.122005E+03
        E I G E N V A L U E ( 11) =   0.634863E+02
        E I G E N V A L U E ( 12) =   0.216955E+02
        E I G E N V E C T O R :
0.21660E+01  0.19704E+01  0.14881E+01  0.79420E+00  0.30128E+01
0.27839E+01  0.21305E+01  0.11526E+01  0.20937E+01  0.19650E+01
0.15239E+01  0.83579E+00



354 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

Problem 13.10: Analyze Problem 8.18 using a 4× 4 mesh of triangles for transient
response. Assume zero initial conditions. Use α = 0.5 and ∆t = 0.001. Investigate
the stability of the solution when α = 0.0 and ∆t = 0.0025. The number of time
steps should be such that the solution reaches its peak value or a steady state.

Solution: From Problem 13.9, it is clear that for 4 × 4 mesh of linear triangles,
the critical time step for conditionally stable schemes is ∆tcr = 0.00217. So, we
may wish to investigate the instability of the forward difference scheme (α = 0) using
∆t = 0.0025. The results of the forward difference scheme and Crank-Nicolson scheme
are included in Figs. 13.10(a) and 13.10(b).

Fig. 13.10: (a) Transient response showing instability of the forward difference
scheme. (b) Transient response reaching steady state with Crank-
Nicolson scheme.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.
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Problem 13.13: Analyze the heat transfer problem in Problem 8.28 using an 8×16
mesh of linear triangular elements and an equivalent mesh of linear rectangular
elements.

Solution: Using the symmetry considerations, we model the 2 × 8 cm domain with
8 × 16 mesh of linear triangles as well as rectangles. The problem has no specified
primary variables, one nonzero specified secondary variable at node 117 of heat
Q117 = 125 W, and eight elements at the top row have convection boundary. The
input files and modified outputs are presented in Boxes 13.13a and 13.13b.

Box 13.13a: Input data and edited output for 8× 16 mesh of triangles.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.
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Element node numbers

    Prob 8.28:  Heat transfer in a medium with cables (triangles)
    0   2   0   0                                ITYPE,IGRAD,ITEM,NEIGN
    0   3   1   0                                IELTYP,NPE,MESH,NPRNT
    8  16                                        NX, NY
    0.0  0.25 0.25 0.25 0.25 0.25 0.25
         0.25 0.25                               X0, DX(I)
    0.0  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5
         0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  Y0, DY(I)
    0                                            NSPV
    1                                            NSSV
    117  1                                       ISSV(1,1), ISSV(1,2)
   125.0                                         VSSV(1)
    10.0   0.0  0.0                              A10, A1X, A1Y
    15.0   0.0  0.0                              A20, A2X, A2Y
    0.0                                          A00
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(Table 13.13a continued from the previous page)

.

Box 13.13b: Partial input data and edited output for 8× 16 mesh of rectangles.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

    Prob 8.28:  Heat transfer in a medium with cables (rectangles)
    0   2   0   0                                ITYPE,IGRAD,ITEM,NEIGN
    1   4   1   0                                IELTYP,NPE,MESH,NPRNT
    8  16                                        NX, NY
    . . . . . . . . . . .
    1                                            ICONV
    8                                            NBE
    121  4  3  5.0  -5.0
    122  4  3  5.0  -5.0
    123  4  3  5.0  -5.0
    124  4  3  5.0  -5.0
    125  4  3  5.0  -5.0
    126  4  3  5.0  -5.0
    127  4  3  5.0  -5.0
    128  4  3  5.0  -5.0                         IBE, INOD, BETA, TINF
    0.0  0.0   0.0                               F0,  FX,  FY

     Node    x-coord.      y-coord.    Primary DOF

       1   0.00000E+00   0.00000E+00   0.15831E+02
       9   0.20000E+01   0.00000E+00   0.15836E+02
      18   0.20000E+01   0.50000E+00   0.15836E+02
      90   0.20000E+01   0.45000E+01   0.16301E+02
     117   0.20000E+01   0.60000E+01   0.24932E+02
     126   0.20000E+01   0.65000E+01   0.15532E+02
     145   0.00000E+00   0.80000E+01   0.71346E+01
     153   0.20000E+01   0.80000E+01   0.78876E+01

    1                                            ICONV
    8                                            NBE
    242  2  3  5.0  -5.0
    244  2  3  5.0  -5.0
    246  2  3  5.0  -5.0
    248  2  3  5.0  -5.0
    250  2  3  5.0  -5.0
    252  2  3  5.0  -5.0
    254  2  3  5.0  -5.0
    256  2  3  5.0  -5.0                         IBE, INOD, BETA, TINF
    0.0  0.0   0.0                               F0,  FX,  FY

     Node    x-coord.      y-coord.    Primary DOF

       1   0.00000E+00   0.00000E+00   0.15830E+02
       9   0.20000E+01   0.00000E+00   0.15837E+02
      18   0.20000E+01   0.50000E+00   0.15837E+02
      90   0.20000E+01   0.45000E+01   0.16361E+02
     117   0.20000E+01   0.60000E+01   0.23163E+02
     126   0.20000E+01   0.65000E+01   0.16247E+02
     145   0.00000E+00   0.80000E+01   0.71123E+01
     153   0.20000E+01   0.80000E+01   0.79344E+01
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Problem 13.15: Analyze Problem 8.30 for nodal temperatures and heat flow across
the boundaries. Use the following data: k = 30 W/(m ◦C), β = 60 W/(m2 ◦ C),
T∞ = 0◦C, T0 = 100◦C, q0 = 2× 105 W/m2, g0 = 107 W/m 3, and a = 1 cm.

Solution: The input data and partial output are included in Box 13.15.

Box 13.15: Input data and edited output for Prob. 8.30.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

    Prob 8.30:  Heat transfer in a square region (rectangles)
    0   2   0   0                   ITYPE,IGRAD,ITEM,NEIGN
    1   4   1   2                   IELTYP,NPE,MESH,NPRNT
    2   2                           NX, NY
    0.0  0.01  0.01                 X0, DX(I)
    0.0  0.01  0.01                 Y0, DY(I)
    3                               NSPV
    3 1   6 1   9 1                 ISPV(I,J)
   100.0 100.0 100.0                VSPV(I)
    3                               NSSV
    1 1   4 1   7 1                 ISSV(I,J)
   1.0E3  2.0E3 1.0E3               VSSV(I)
    30.0   0.0  0.0                 A10, A1X, A1Y
    30.0   0.0  0.0                 A20, A2X, A2Y
    0.0                             A00
    1                               ICONV
    2                               NBE
    3  3  4  60.0  0.0
    4  3  4  60.0  0.0              IBE, INOD, BETA, TINF
   1.0E07  0.0  0.0                 F0,  FX,  FY

     Node    x-coord.      y-coord.    Primary DOF

       1   0.00000E+00   0.00000E+00   0.29706E+03
       2   0.10000E-01   0.00000E+00   0.21458E+03
       3   0.20000E-01   0.00000E+00   0.10000E+03
       4   0.00000E+00   0.10000E-01   0.29598E+03
       5   0.10000E-01   0.10000E-01   0.21383E+03
       6   0.20000E-01   0.10000E-01   0.10000E+03
       7   0.00000E+00   0.20000E-01   0.29215E+03
       8   0.10000E-01   0.20000E-01   0.21088E+03
       9   0.20000E-01   0.20000E-01   0.10000E+03

    x-coord.    y-coord.   a22(du/dy) -a11(du/dx)  Flux Mgntd Orientation

   0.5000E-02  0.5000E-02 -0.2749E+04  0.2469E+06  0.2469E+06   90.64
   0.1500E-01  0.5000E-02 -0.1128E+04  0.3426E+06  0.3426E+06   90.19
   0.5000E-02  0.1500E-01 -0.1016E+05  0.2451E+06  0.2453E+06   92.37
   0.1500E-01  0.1500E-01 -0.4424E+04  0.3371E+06  0.3371E+06   90.75
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Problem 13.17: Analyze Problem 8.35 for nodal temperature and heat flows across
the boundary . Take k = 5 W/(m ◦C).

Solution: The input data and partial output are included in Box 13.17.

Box 13.17: Input data and edited output for Prob. 8.35.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Prob 8.35:  Heat transfer in a square region (rectangles)
    0   2   0   0                    ITYPE,IGRAD,ITEM,NEIGN
    1   4   1   2                    IELTYP,NPE,MESH,NPRNT
    4   2                            NX, NY
    0.0  0.02  0.02  0.02  0.02      X0, DX(I)
    0.0  0.01  0.01                  Y0, DY(I)
    3                                NSPV
    1 1   6 1   11 1                 ISPV(I,J)
   300.0 300.0 300.0                 VSPV(I)
    0                                NSSV
    5.0   0.0  0.0                   A10, A1X, A1Y
    5.0   0.0  0.0                   A20, A2X, A2Y
    0.0                              A00
    1                                ICONV
    10                               NBE
    1  1  2  40.0  20.0
    2  1  2  40.0  20.0
    3  1  2  40.0  20.0
    4  1  2  40.0  20.0
    4  2  3  40.0  20.0
    5  3  4  40.0  20.0
    6  3  4  40.0  20.0
    7  3  4  40.0  20.0
    8  3  4  40.0  20.0
    8  3  4  40.0  20.0              IBE, INOD, BETA, TINF
    0.0  0.0  0.0                    F0,  FX,  FY

     Node    x-coord.      y-coord.    Primary DOF
  
       1   0.00000E+00   0.00000E+00   0.30000E+03
       2   0.20000E-01   0.00000E+00   0.17544E+03
       3   0.40000E-01   0.00000E+00   0.11089E+03
       4   0.60000E-01   0.00000E+00   0.75481E+02
       5   0.80000E-01   0.00000E+00   0.61251E+02
       6   0.00000E+00   0.10000E-01   0.30000E+03
       7   0.20000E-01   0.10000E-01   0.18415E+03
       8   0.40000E-01   0.10000E-01   0.11403E+03
       9   0.60000E-01   0.10000E-01   0.77269E+02
      10   0.80000E-01   0.10000E-01   0.63053E+02
      11   0.00000E+00   0.20000E-01   0.30000E+03
      12   0.20000E-01   0.20000E-01   0.17542E+03
      13   0.40000E-01   0.20000E-01   0.11112E+03
      14   0.60000E-01   0.20000E-01   0.73434E+02
      15   0.80000E-01   0.20000E-01   0.59596E+02
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Problem 13.18: Consider heat transfer in a rectangular domain with a central
heated circular cylinder (see Fig. P13.19 for the geometry). Analyze the problem
using the mesh of linear quadrilateral elements shown in Fig. 13.4.2(b).

Solution: The input data and partial output are included in Box 13.18.

Box 13.18: Input data and edited output for Problem 13.18.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Problem 13.18: Heat transfer from a circular cylinder
    0   2   0   0                                ITYPE,IGRAD,ITEM,NEIGN
    1   4   2   0                                IELTYP,NPE,MESH,NPRNT
   16  25                                        NEM, NNM
    5                                            NRECL
    1   5  1  0.0  0.0   0.03       0.0       6.0  NOD1,NODL,NODINC, ...
    6  10  1  0.0  0.01  0.0307612  0.0038268 6.0
   11  15  1  0.0  0.02  0.0329289  0.007071  6.0
   16  20  1  0.02 0.02  0.0361732  0.0092388 6.0
   21  25  1  0.04 0.02  0.04       0.01      6.0
    4                                            NRECEL
    1    4    1    1    4      1  2   7   6      NEL1,NELL,IELINC, NODINC
    5    8    1    1    4      6  7  12  11
    9   12    1    1    4     11 12  17  16
   13   16    1    1    4     16 17  22  21
    3                                            NSPV
    1 1     6 1     11 1                         ISPV(I,J)
    300.0  300.0   300.0                         VSPV(I)
    0                                            NSSV
    10.0  0.0  0.0                               A10, A1X, A1Y
    10.0  0.0  0.0                               A20, A2X, A2Y
    0.0                                          A00
    1                                            ICONV
    4                                            NBE
    4   2  3  40.0  20.0
    8   2  3  40.0  20.0
   12   2  3  40.0  20.0
   16   2  3  40.0  20.0                         IBE, INOD, BETA, TINF
    0.0  0.0  0.0                                F0,  FX,  FY

     Node    x-coord.      y-coord.    Primary DOF
  
       2   0.12857E-01   0.00000E+00   0.28987E+03
       3   0.22143E-01   0.00000E+00   0.28229E+03
       4   0.27857E-01   0.00000E+00   0.27717E+03
       5   0.30000E-01   0.00000E+00   0.27506E+03
       8   0.22705E-01   0.54436E-02   0.28200E+03
       9   0.28564E-01   0.42677E-02   0.27678E+03
      10   0.30761E-01   0.38268E-02   0.27456E+03
      15   0.32929E-01   0.70710E-02   0.27334E+03
      20   0.36173E-01   0.92388E-02   0.27190E+03
      21   0.40000E-01   0.20000E-01   0.27365E+03
      22   0.40000E-01   0.15714E-01   0.27354E+03
      23   0.40000E-01   0.12619E-01   0.27255E+03
      24   0.40000E-01   0.10714E-01   0.27141E+03
      25   0.40000E-01   0.10000E-01   0.27084E+03
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Problem 13.19: Analyze the heat transfer problem in Fig. P8.31 with (a) 2×2 and
(b) 4× 4 meshes of linear rectangular elements.

Solution: The input data and partial output are included in Box 13.19.

Box 13.19: Input data and edited output for Problem 13.19.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

   Prob 8.31:  Heat transfer in a square region (rectangles)
    0   2   0   0                                ITYPE,IGRAD,ITEM,NEIGN
    1   4   1   2                                IELTYP,NPE,MESH,NPRNT
    2   2                                        NX, NY
    0.0  0.15  0.15                              X0, DX(I)
    0.0  0.15  0.15                              Y0, DY(I)
    5                                            NSPV
    1 1   2 1   3 1   6 1   9 1                  ISPV(I,J)
   10.0  10.0   40.0  40.0  40.0                 VSPV(I)
    0                                            NSSV
    5.0   0.0  0.0                               A10, A1X, A1Y
    5.0   0.0  0.0                               A20, A2X, A2Y
    0.0                                          A00
    1                                            ICONV
    2                                            NBE
    1  1  4  28.0  0.0
    3  1  4  28.0  0.0                           IBE, INOD, BETA, TINF
    0.0  0.0  0.0                                F0,  FX,  FY

     S O L U T I O N :

     Node    x-coord.      y-coord.    Primary DOF
  
       1   0.00000E+00   0.00000E+00   0.10000E+02
       2   0.15000E+00   0.00000E+00   0.10000E+02
       3   0.30000E+00   0.00000E+00   0.40000E+02
       4   0.00000E+00   0.15000E+00   0.10681E+02
       5   0.15000E+00   0.15000E+00   0.23618E+02
       6   0.30000E+00   0.15000E+00   0.40000E+02
       7   0.00000E+00   0.30000E+00   0.13055E+02
       8   0.15000E+00   0.30000E+00   0.25207E+02
       9   0.30000E+00   0.30000E+00   0.40000E+02
  
    The orientation of  gradient vector is measured fromthe positive x-axis

    x-coord.     y-coord.    a22(du/dy)  -a11(du/dx)   Flux Mgntd  Orientation
  
   0.7500E-01   0.7500E-01   0.2383E+03  -0.2156E+03   0.3214E+03    -42.14
   0.2250E+00   0.7500E-01   0.2270E+03  -0.7730E+03   0.8057E+03    -73.64
   0.7500E-01   0.2250E+00   0.6604E+02  -0.4181E+03   0.4233E+03    -81.02
   0.2250E+00   0.2250E+00   0.2648E+02  -0.5196E+03   0.5203E+03    -87.08
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Problem 13.21: Analyze the problem in Fig. P8.32 with (a) 3 × 3, and (b) 6 × 6
meshes of linear rectangular elements. Take k = 10 W/(m ◦C).

Solution: The input data and partial output are included in Box 13.21.

Box 13.21: Input data and edited output for Problem 13.21.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.
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 Prob 8.32:  Heat transfer in a square region (rectangles)
    0   2   0   0                        ITYPE,IGRAD,ITEM,NEIGN
    1   4   1   2                        IELTYP,NPE,MESH,NPRNT
    3   3                                NX, NY
    0.0  0.333333  0.333333  0.333333    X0, DX(I)
    0.0  0.333333  0.333333  0.333333    Y0, DY(I)
    12                                   NSPV
    1 1   2 1   3 1   4 1   5 1   8 1
    9 1  12 1  13 1  14 1  15 1  16 1
   250.0 250.0 250.0 250.0 150.0 50.0
   150.0  50.0 150.0   0.0   0.0 50.0
    0
   10.0   0.0  0.0
   10.0   0.0  0.0
    0.0
    0
    0.0  0.0  0.0

     Node    x-coord.      y-coord.    Primary DOF
  
       6   0.33333E+00   0.33333E+00   0.17222E+03
       7   0.66667E+00   0.33333E+00   0.15000E+03
       8   0.10000E+01   0.33333E+00   0.50000E+02
       9   0.00000E+00   0.66667E+00   0.15000E+03
      10   0.33333E+00   0.66667E+00   0.10556E+03
      11   0.66667E+00   0.66667E+00   0.72222E+02
      12   0.10000E+01   0.66667E+00   0.50000E+02
      13   0.00000E+00   0.10000E+01   0.15000E+03
      14   0.33333E+00   0.10000E+01   0.00000E+00
      15   0.66667E+00   0.10000E+01   0.00000E+00
      16   0.10000E+01   0.10000E+01   0.50000E+02
  
    x-coord.     y-coord.    a22(du/dy)  -a11(du/dx)   Flux Mgntd  Orientation
  
   0.1667E+00   0.1667E+00  -0.2667E+04  -0.3333E+03   0.2687E+04   -172.87
   0.5000E+00   0.1667E+00  -0.2667E+04   0.3333E+03   0.2687E+04    172.87
   0.8333E+00   0.1667E+00  -0.4500E+04   0.1500E+04   0.4743E+04    161.57
   0.1667E+00   0.5000E+00  -0.1000E+04   0.3333E+03   0.1054E+04    161.57
   0.5000E+00   0.5000E+00  -0.2167E+04   0.8333E+03   0.2321E+04    158.96
   0.8333E+00   0.5000E+00  -0.1167E+04   0.1833E+04   0.2173E+04    122.47
   0.1667E+00   0.8333E+00  -0.1583E+04   0.2917E+04   0.3319E+04    118.50
   0.5000E+00   0.8333E+00  -0.2667E+04   0.5000E+03   0.2713E+04    169.38
   0.8333E+00   0.8333E+00  -0.1083E+04  -0.4167E+03   0.1161E+04   -158.96
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13.24 Analyze the problem in Fig. P8.35 for transient response using (a) α = 0 and
(b) α = 0.5. Use c = ρcp = 1.0.

Solution: In order to determine the critical time step, first we find the eigenvalues of
the problem. The input data files and partial output for the eigenvalue and transient
analysis are included in Boxes 13.24a and 13.24b.

Box 13.24a: Input data and edited output for the eigenvalue analysis of Problem
13.24.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Prob 8.35a:  Eigenvalues of Problem 8.35 (rectangles)
    0   2   1   1                    ITYPE,IGRAD,ITEM,NEIGN
   12   0                            NVALU, NVCTR
    1   4   1   2                    IELTYP,NPE,MESH,NPRNT
    4   2                            NX, NY
    0.0  0.02  0.02  0.02  0.02      X0, DX(I)
    0.0  0.01  0.01                  Y0, DY(I)
    3                                NSPV
    1 1   6 1   11 1                 ISPV(I,J)
    5.0   0.0  0.0                   A10, A1X, A1Y
    5.0   0.0  0.0                   A20, A2X, A2Y
    0.0                              A00
    1                                ICONV
    10                               NBE
    1  1  2  40.0  20.0
    2  1  2  40.0  20.0
    3  1  2  40.0  20.0
    4  1  2  40.0  20.0
    4  2  3  40.0  20.0
    5  3  4  40.0  20.0
    6  3  4  40.0  20.0
    7  3  4  40.0  20.0
    8  3  4  40.0  20.0
    8  3  4  40.0  20.0              IBE, INOD, BETA, TINF
    1.0  0.0  0.0                    C0,  CX,  CY

        S O L U T I O N :

        Number of Jacobi iterations ..... NROT = 178

        E I G E N V A L U E (  1) =   0.750377E+06
        E I G E N V A L U E (  2) =   0.678560E+06
        E I G E N V A L U E (  3) =   0.634478E+06
        E I G E N V A L U E (  4) =   0.616934E+06
        E I G E N V A L U E (  5) =   0.300201E+06
        E I G E N V A L U E (  6) =   0.228506E+06
        E I G E N V A L U E (  7) =   0.184303E+06
        E I G E N V A L U E (  8) =   0.166798E+06
        E I G E N V A L U E (  9) =   0.140265E+06
        E I G E N V A L U E ( 10) =   0.694258E+05
        E I G E N V A L U E ( 11) =   0.246351E+05
        E I G E N V A L U E ( 12) =   0.716251E+04
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Box 13.24b: Input data and edited output for the transient analysis of Problem
13.24.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

Convection ∞T,β

a = 2 cm

T 
= 

T 0  1 cm

1 2 3 4 5
10

1511 12 13 14
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1 2 3 4

5 6 7 8

∞T,β

∞T,β

Convection 

 Prob 8.35b:  Transient analysis of Problem 8.35 (rectangles)
    0   2   1   0                    ITYPE,IGRAD,ITEM,NEIGN
    1   4   1   0                    IELTYP,NPE,MESH,NPRNT
    4   2                            NX, NY
    0.0  0.02  0.02  0.02  0.02      X0, DX(I)
    0.0  0.01  0.01                  Y0, DY(I)
    3                                NSPV
    1 1   6 1   11 1                 ISPV(I,J)
   300.0 300.0 300.0                 VSPV(I)
    0                                NSSV
    5.0   0.0  0.0                   A10, A1X, A1Y
    5.0   0.0  0.0                   A20, A2X, A2Y
    0.0                              A00
    1                                ICONV
    10                               NBE
    1  1  2  40.0  20.0
    2  1  2  40.0  20.0
    3  1  2  40.0  20.0
    4  1  2  40.0  20.0
    4  2  3  40.0  20.0
    5  3  4  40.0  20.0
    6  3  4  40.0  20.0
    7  3  4  40.0  20.0
    8  3  4  40.0  20.0
    8  3  4  40.0  20.0              IBE, INOD, BETA, TINF
    0.0  0.0  0.0                    F0,  FX,  FY
    1.0  0.0  0.0                    C0,  CX,  CY
    500  501  10    0                NTIME,NSTP,INTVL,INTIAL
    1.0E-06   0.0  0.5  1.0E-4       DT,ALFA,GAMA,EPSLN

     *TIME* = 0.10000E-05     Time Step Number =  1

     Node    x-coord.      y-coord.    Primary DOF

       1   0.00000E+00   0.00000E+00   0.30000E+03
       2   0.20000E-01   0.00000E+00  -0.80008E+02
       3   0.40000E-01   0.00000E+00   0.21954E+02
       4   0.60000E-01   0.00000E+00  -0.58868E+01
       5   0.80000E-01   0.00000E+00   0.36334E+01
      10   0.80000E-01   0.10000E-01   0.29023E+01
      15   0.80000E-01   0.20000E-01   0.37299E+01

     *TIME* = 0.10000E-04     Time Step Number = 10

       1   0.00000E+00   0.00000E+00   0.30000E+03
       2   0.20000E-01   0.00000E+00  -0.74458E+01
       3   0.40000E-01   0.00000E+00  -0.63061E+01
       4   0.60000E-01   0.00000E+00   0.39980E+01
       5   0.80000E-01   0.00000E+00   0.62873E+00
      10   0.80000E-01   0.10000E-01  -0.38760E+00
      15   0.80000E-01   0.20000E-01   0.11335E+01
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(Box 13.24b is continued from the previous page; α = 0)

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 
    *TIME* = 0.40000E-04     Time Step Number = 40
       1   0.00000E+00   0.00000E+00   0.30000E+03
       2   0.20000E-01   0.00000E+00   0.86300E+02
       3   0.40000E-01   0.00000E+00   0.74688E+01
       4   0.60000E-01   0.00000E+00   0.72856E+00
       5   0.80000E-01   0.00000E+00   0.55114E+01
      10   0.80000E-01   0.10000E-01   0.48108E+01
      15   0.80000E-01   0.20000E-01   0.60875E+01
 
     *TIME* = 0.10000E-03     Time Step Number =100
       1   0.00000E+00   0.00000E+00   0.30000E+03
       2   0.20000E-01   0.00000E+00   0.13695E+03
       3   0.40000E-01   0.00000E+00   0.52757E+02
       4   0.60000E-01   0.00000E+00   0.17355E+02
       5   0.80000E-01   0.00000E+00   0.10216E+02
      10   0.80000E-01   0.10000E-01   0.96855E+01
      15   0.80000E-01   0.20000E-01   0.10433E+02

     *TIME* = 0.20000E-03     Time Step Number =200
       1   0.00000E+00   0.00000E+00   0.30000E+03
       2   0.20000E-01   0.00000E+00   0.16020E+03
       3   0.40000E-01   0.00000E+00   0.84988E+02
       4   0.60000E-01   0.00000E+00   0.45326E+02
       5   0.80000E-01   0.00000E+00   0.32576E+02
      10   0.80000E-01   0.10000E-01   0.33055E+02
      15   0.80000E-01   0.20000E-01   0.31928E+02

     *TIME* = 0.30000E-03     Time Step Number =300
       1   0.00000E+00   0.00000E+00   0.30000E+03
       2   0.20000E-01   0.00000E+00   0.16830E+03
       3   0.40000E-01   0.00000E+00   0.98472E+02
       4   0.60000E-01   0.00000E+00   0.60636E+02
       5   0.80000E-01   0.00000E+00   0.46961E+02
      10   0.80000E-01   0.10000E-01   0.48102E+02
      15   0.80000E-01   0.20000E-01   0.45804E+02

     *TIME* = 0.40000E-03     Time Step Number =400
       1   0.00000E+00   0.00000E+00   0.30000E+03
       2   0.20000E-01   0.00000E+00   0.17199E+03
       3   0.40000E-01   0.00000E+00   0.10486E+03
       4   0.60000E-01   0.00000E+00   0.68234E+02
       5   0.80000E-01   0.00000E+00   0.54261E+02
      10   0.80000E-01   0.10000E-01   0.55740E+02
      15   0.80000E-01   0.20000E-01   0.52850E+02

     *TIME* = 0.50000E-03     Time Step Number =500
       1   0.00000E+00   0.00000E+00   0.30000E+03
       2   0.20000E-01   0.00000E+00   0.17376E+03
       3   0.40000E-01   0.00000E+00   0.10795E+03
       4   0.60000E-01   0.00000E+00   0.71948E+02
       5   0.80000E-01   0.00000E+00   0.57842E+02
      10   0.80000E-01   0.10000E-01   0.59487E+02
      15   0.80000E-01   0.20000E-01   0.56307E+02
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(Box 13.24b is continued from the previous two pages; α = 0.5)

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

    *TIME* = 0.10000E-05     Time Step Number =  1
       1   0.00000E+00   0.00000E+00   0.30000E+03
       2   0.20000E-01   0.00000E+00  -0.75048E+02
       3   0.40000E-01   0.00000E+00   0.19257E+02
       4   0.60000E-01   0.00000E+00  -0.48145E+01
       5   0.80000E-01   0.00000E+00   0.28232E+01
      10   0.80000E-01   0.10000E-01   0.22798E+01
      15   0.80000E-01   0.20000E-01   0.29189E+01

     *TIME* = 0.10000E-04     Time Step Number = 10
       1   0.00000E+00   0.00000E+00   0.30000E+03
       2   0.20000E-01   0.00000E+00  -0.61555E+01
       3   0.40000E-01   0.00000E+00  -0.56611E+01
       4   0.60000E-01   0.00000E+00   0.35382E+01
       5   0.80000E-01   0.00000E+00   0.90864E+00
      10   0.80000E-01   0.10000E-01  -0.10142E+00
      15   0.80000E-01   0.20000E-01   0.13939E+01

     *TIME* = 0.10000E-03     Time Step Number =100
       1   0.00000E+00   0.00000E+00   0.30000E+03
       2   0.20000E-01   0.00000E+00   0.13679E+03
       3   0.40000E-01   0.00000E+00   0.52687E+02
       4   0.60000E-01   0.00000E+00   0.17478E+02
       5   0.80000E-01   0.00000E+00   0.10408E+02
      10   0.80000E-01   0.10000E-01   0.98865E+01
      15   0.80000E-01   0.20000E-01   0.10619E+02

     *TIME* = 0.20000E-03     Time Step Number =200
       1   0.00000E+00   0.00000E+00   0.30000E+03
       2   0.20000E-01   0.00000E+00   0.16014E+03
       3   0.40000E-01   0.00000E+00   0.84912E+02
       4   0.60000E-01   0.00000E+00   0.45283E+02
       5   0.80000E-01   0.00000E+00   0.32556E+02
      10   0.80000E-01   0.10000E-01   0.33034E+02
      15   0.80000E-01   0.20000E-01   0.31909E+02

     *TIME* = 0.30000E-03     Time Step Number =300
       1   0.00000E+00   0.00000E+00   0.30000E+03
       2   0.20000E-01   0.00000E+00   0.16826E+03
       3   0.40000E-01   0.00000E+00   0.98412E+02
       4   0.60000E-01   0.00000E+00   0.60570E+02
       5   0.80000E-01   0.00000E+00   0.46900E+02
      10   0.80000E-01   0.10000E-01   0.48039E+02
      15   0.80000E-01   0.20000E-01   0.45746E+02

     *TIME* = 0.50000E-03     Time Step Number =500
       1   0.00000E+00   0.00000E+00   0.30000E+03
       2   0.20000E-01   0.00000E+00   0.17374E+03
       3   0.40000E-01   0.00000E+00   0.10793E+03
       4   0.60000E-01   0.00000E+00   0.71914E+02
       5   0.80000E-01   0.00000E+00   0.57809E+02
      10   0.80000E-01   0.10000E-01   0.59452E+02
      15   0.80000E-01   0.20000E-01   0.56275E+02
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13.25 Analyze the axisymmetric problem in Fig. P8.26 using the Crank—Nicolson
method. Use an 8 × 1 mesh of linear rectangular elements and c = ρcp = 3.6 × 106
J/(m3·K).

Solution: The eigenvalue analysis gives ∆tcr = 0.1698. Input data and partial output
are included in Boxes 13.25a and 13.25b.

Box 13.25a: Input data and edited output for the eigenvalue analysis of Problem
13.25.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

    Prob 8.26a  Eigenvalue of an axisymmetric problem
    0   2   1   1                       ITYPE,IGRAD,ITEM,NEIGN
    16  0
    1   4   1   2                       IELTYP,NPE,MESH,NPRNT
    8   1                               NX, NY
    0.0  0.0025  0.0025  0.0025  0.0025
         0.0025  0.0025  0.0025  0.0025 X0, DX(I)
    0.0  1.0                            Y0, DY(1)
    2                                   NSPV
    9 1    18 1                         ISPV(I,J)
    0.0   20.0  0.0                     A10, A1X, A1Y
    0.0   20.0  0.0                     A20, A2X, A2Y
    0.0                                 A00
    0                                   ICONV
    0.     3.6E06     0.0               C0,  CX,  CY

 S O L U T I O N :

        Number of Jacobi iterations ..... NROT = 225

        E I G E N V A L U E (  1) =   0.117769E+02
        E I G E N V A L U E (  2) =   0.117768E+02
        E I G E N V A L U E (  3) =   0.893008E+01
        E I G E N V A L U E (  4) =   0.389702E+01
        E I G E N V A L U E (  5) =   0.620594E+01
        E I G E N V A L U E (  6) =   0.893014E+01
        E I G E N V A L U E (  7) =   0.620601E+01
        E I G E N V A L U E (  8) =   0.389696E+01
        E I G E N V A L U E (  9) =   0.112116E+01
        E I G E N V A L U E ( 10) =   0.223250E+01
        E I G E N V A L U E ( 11) =   0.223256E+01
        E I G E N V A L U E ( 12) =   0.434475E+00
        E I G E N V A L U E ( 13) =   0.112109E+01
        E I G E N V A L U E ( 14) =   0.434542E+00
        E I G E N V A L U E ( 15) =   0.804288E-01
        E I G E N V A L U E ( 16) =   0.804954E-01

1698.0
7769.11
2

cr ==∆t
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Box 13.25b: Input data and edited output for the transient analysis of Problem
13.25.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

    Prob 8.26b  Transient analysis of an axisymmetric problem
    0   2   1   0                         ITYPE,IGRAD,ITEM,NEIGN
    1   4   1   0                         IELTYP,NPE,MESH,NPRNT
    8   1                                 NX, NY
    0.0  0.0025  0.0025  0.0025  0.0025
         0.0025  0.0025  0.0025  0.0025   X0, DX(I)
    0.0  1.0                              Y0, DY(1)
    2                                     NSPV
    9 1    18 1                           ISPV(I,J)
    100.0  100.0                          VSPV(I)
    0                                     NSSV
    0.0   20.0  0.0                       A10, A1X, A1Y
    0.0   20.0  0.0                       A20, A2X, A2Y
    0.0                                   A00
    0                                     ICONV
    0.0  1.0E07  0.0                      F0,  FX,  FY
    0.0  3.6E06  0.0                       C0,  CX,  CY
    500  501  10     0               NTIME,NSTP,INTVL,INTIAL
    0.2  0.5  0.5  1.0E-5            DT,ALFA,GAMA,EPSLN

    *TIME* = 0.10000E+02     Time Step Number = 50

     Node    x-coord.      y-coord.    Primary DOF

       1   0.00000E+00   0.00000E+00   0.53769E+02
       2   0.25000E-02   0.00000E+00   0.55406E+02
       3   0.50000E-02   0.00000E+00   0.59123E+02
       4   0.75000E-02   0.00000E+00   0.64867E+02
       5   0.10000E-01   0.00000E+00   0.72184E+02
       6   0.12500E-01   0.00000E+00   0.80371E+02
       7   0.15000E-01   0.00000E+00   0.88488E+02
       8   0.17500E-01   0.00000E+00   0.95424E+02
       9   0.20000E-01   0.00000E+00   0.10000E+03

    *TIME* = 0.90000E+02     Time Step Number =450

       1   0.00000E+00   0.00000E+00   0.15037E+03
       2   0.25000E-02   0.00000E+00   0.14933E+03
       3   0.50000E-02   0.00000E+00   0.14691E+03
       4   0.75000E-02   0.00000E+00   0.14297E+03
       5   0.10000E-01   0.00000E+00   0.13749E+03
       6   0.12500E-01   0.00000E+00   0.13045E+03
       7   0.15000E-01   0.00000E+00   0.12186E+03
       8   0.17500E-01   0.00000E+00   0.11171E+03
       9   0.20000E-01   0.00000E+00   0.10000E+03

Reached steady-state at this time 
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Problem 13.27: Repeat Problem 13.26 with the mesh of linear triangular elements
shown in Fig. 8.3.8.

Solution: Input data and partial output are included in Boxes 13.27a and 13.27b,
respectively.

Box 13.27a: Input data for the ground water flow problem of Problem 13.27.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Problem 13.27: Ground water flow problem (triangles)
    0   1   0   0                          ITYPE,IGRAD,ITEM,NEIGN
    0   3   2   1                          IELTYP,NPE,MESH,NPRNT
   64   45                                            NEM,NNM
    9                                                 NRECL
    1    5    1    0.0    0.0    600.0     0.0    1.0 NOD1,NODL,...
    6   10    1    0.0   87.5    600.0   175.0    1.0
   11   15    1    0.0  175.0    600.0   350.0    1.0
   16   20    1    0.0  262.5    600.0   525.0    1.0
   21   25    1    0.0  350.0    600.0   700.0    1.0
   26   30    1    0.0  525.0    600.0   787.5    1.0
   31   35    1    0.0  700.0    600.0   875.0    1.0
   36   40    1    0.0  875.0    600.0   962.5    1.0
   41   45    1    0.0 1050.0    600.0  1050.0    1.0
   16                                      NRECEL
    1    7    2    1    3      1   2   6   NEL1,NELL,IELINC,NODINC,..
    2    8    2    1    3      2   7   6
    9   15    2    1    3      6   7  11
   10   16    2    1    3      7  12  11
   17   23    2    1    3     11  12  16
   18   24    2    1    3     12  17  16
   25   31    2    1    3     16  17  21
   26   32    2    1    3     17  22  21
   33   39    2    1    3     21  22  26
   34   40    2    1    3     22  27  26
   41   47    2    1    3     26  27  31
   42   48    2    1    3     27  32  31
   49   55    2    1    3     31  32  36
   50   56    2    1    3     32  37  36
   57   63    2    1    3     36  37  41
   58   64    2    1    3     37  42  41
   5                                        NSPV
  41 1  42 1  43 1  44 1  45 1              ISPV
  100.0 100.0 100.0 100.0 100.0             VSPV
   6                                        NSSV
   21 1   22 1   23 1   24 1   25 1   33 1  ISSV(I,J)
  45.069 90.139 90.139 90.139 45.069 -200.0 VSSV(I)
    1.75  0.0  0.0                          A10, A1X, A1Y
    1.0   0.0  0.0                          A20, A2X, A2Y
    0.0                                     A00
    0                                       ICONV
    0.0  0.0  0.0                           F0, FX, FY
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Box 13.27b: Edited output for the ground water flow problem of Problem 13.27.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

a = 1050 mImpermeable, 

0=
∂
∂

n
φ

0=
∂
∂

n
φ

Impermeable, 
m100=φ

b = 600 m

23
22

23
11 /day/mm1,/day/mm75.1 == aa

Stream 
/day/mm5.0 3=q

Impermeable, 

0=
∂
∂

n
φ

200 m

400 m

•
(300, 787.5)Pump

/daym200 3=Q

3
2

y

x

     Node    x-coord.      y-coord.    Primary DOF

       1   0.00000E+00   0.00000E+00   0.33097E+03
       2   0.15000E+03   0.00000E+00   0.32998E+03
       3   0.30000E+03   0.00000E+00   0.32788E+03
       4   0.45000E+03   0.00000E+00   0.32598E+03
       5   0.60000E+03   0.00000E+00   0.32523E+03
      10   0.60000E+03   0.17500E+03   0.32330E+03
      15   0.60000E+03   0.35000E+03   0.31538E+03
      20   0.60000E+03   0.52500E+03   0.29556E+03
      21   0.00000E+00   0.35000E+03   0.35206E+03
      22   0.15000E+03   0.43750E+03   0.33574E+03
      23   0.30000E+03   0.52500E+03   0.31120E+03
      24   0.45000E+03   0.61250E+03   0.28367E+03
      25   0.60000E+03   0.70000E+03   0.25282E+03
      26   0.00000E+00   0.52500E+03   0.29531E+03
      27   0.15000E+03   0.59063E+03   0.26855E+03
      28   0.30000E+03   0.65625E+03   0.23939E+03
      29   0.45000E+03   0.72188E+03   0.21890E+03
      30   0.60000E+03   0.78750E+03   0.19783E+03
      31   0.00000E+00   0.70000E+03   0.21492E+03
      32   0.15000E+03   0.74375E+03   0.19083E+03
      33   0.30000E+03   0.78750E+03   0.14004E+03
      34   0.45000E+03   0.83125E+03   0.16513E+03
      35   0.60000E+03   0.87500E+03   0.15799E+03
      36   0.00000E+00   0.87500E+03   0.14902E+03
      37   0.15000E+03   0.89688E+03   0.13931E+03
      38   0.30000E+03   0.91875E+03   0.13034E+03
      39   0.45000E+03   0.94063E+03   0.13121E+03
      40   0.60000E+03   0.96250E+03   0.12729E+03
      41   0.00000E+00   0.10500E+04   0.10000E+03
      42   0.15000E+03   0.10500E+04   0.10000E+03
      43   0.30000E+03   0.10500E+04   0.10000E+03
      44   0.45000E+03   0.10500E+04   0.10000E+03
      45   0.60000E+03   0.10500E+04   0.10000E+03
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Problem 13.31: Analyze the flow around cylinder of elliptical cross-section (see
Fig. P8.41). Use the symmetry and an appropriate mesh of linear triangular elements.
Use the stream function approach.

Solution: Here we use the mesh of linear triangles from Fig. 8.5.10. Input data and
partial output are included in Boxes 13.31a and 13.31b, respectively.

Box 13.31a: Input data for the flow around an elliptic cylinder of Problem 13.31.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Prob 13.31: Flow around an elliptic cylinder (Stream function-Triangles)
    0   2   0   0                                  ITYPE,IGRAD,ITEM,NEIGN
    0   3   2   1                                  IELTYP,NPE,MESH,NPRNT
   60  42                                          NEM, NNM
    7                                              NRECL
    1    6    1    0.0    0.0    3.0       0.0       0.3164  NOD1,NODL,...
    7   12    1    0.0    0.6667 3.034074  0.12941   0.3164
   13   18    1    0.0    1.3333 3.133975  0.25      0.3164
   19   24    1    0.0    2.0    3.292893  0.35355   0.3164
   25   30    1    1.3333 2.0    3.5       0.4330    0.3164
   31   36    1    2.6667 2.0    3.74118   0.48296   0.3164
   37   42    1    4.0    2.0    4.0       0.5       0.3164
   12                                              NRECEL
    1    9    2    1    3      1  2   8            NEL1,NELL,IELINC,NODINC
    2   10    2    1    3      1  8   7
   11   19    2    1    3      7  8  14
   12   20    2    1    3      7 14  13
   21   29    2    1    3     13 14  20
   22   30    2    1    3     13 20  19
   31   39    2    1    3     19 20  25
   32   40    2    1    3     20 26  25
   41   49    2    1    3     25 26  31
   42   50    2    1    3     26 32  31
   51   59    2    1    3     31 32  37
   52   60    2    1    3     32 38  37
   18                                              NSPV
    1 1   2 1   3 1   4 1   5 1  6 1  12 1  18 1
   24 1  30 1  36 1  42 1   7 1 13 1  19 1  25 1
   31 1  37 1                                      ISPV(I,J)
    0.0   0.0   0.0   0.0   0.0     0.0     0.0
    0.0   0.0   0.0   0.0   0.0   0.6667  1.3333
    2.0   2.0   2.0   2.0                          VSPV(I)
    0                                              NSSV
    1.0  0.0  0.0                                  A10, A1X, A1Y
    1.0  0.0  0.0                                  A20, A2X, A2Y
    0.0                                            A00
    0                                              ICONV
    0.0  0.0  0.0                                  F0,  FX,  FY
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Box 13.31b: Edited output for the flow around an elliptic cylinder of Problem
13.31.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

a = 8 cm

1 cm
b = 4 cm

2 cm

10 =u10 =u

Fixed wall (no flow)

Fixed wall (no flow)

 S O L U T I O N :

     Node    x-coord.      y-coord.    Primary DOF

       7   0.00000E+00   0.66670E+00   0.66670E+00
       8   0.29170E+00   0.61504E+00   0.61367E+00
       9   0.74096E+00   0.53549E+00   0.53175E+00
      10   0.13478E+01   0.42803E+00   0.41956E+00
      11   0.21121E+01   0.29267E+00   0.27278E+00
      13   0.00000E+00   0.13333E+01   0.13333E+01
      14   0.30130E+00   0.12292E+01   0.12276E+01
      15   0.76535E+00   0.10687E+01   0.10635E+01
      16   0.13921E+01   0.85209E+00   0.83773E+00
      17   0.21817E+01   0.57917E+00   0.53821E+00
      19   0.00000E+00   0.20000E+01   0.20000E+01
      20   0.31658E+00   0.18417E+01   0.18415E+01
      21   0.80416E+00   0.15979E+01   0.15949E+01
      22   0.14627E+01   0.12686E+01   0.12537E+01
      23   0.22923E+01   0.85384E+00   0.79541E+00
      26   0.15416E+01   0.18493E+01   0.18450E+01
      27   0.18624E+01   0.16173E+01   0.16001E+01
      28   0.22958E+01   0.13039E+01   0.12524E+01
      29   0.28416E+01   0.90915E+00   0.74952E+00
      32   0.27700E+01   0.18542E+01   0.18330E+01
      33   0.29291E+01   0.16295E+01   0.15691E+01
      34   0.31440E+01   0.13261E+01   0.11951E+01
      35   0.34147E+01   0.94393E+00   0.68802E+00
      38   0.40000E+01   0.18558E+01   0.18217E+01
      39   0.40000E+01   0.16337E+01   0.15440E+01
      40   0.40000E+01   0.13337E+01   0.11610E+01
      41   0.40000E+01   0.95579E+00   0.65865E+00
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Problem 13.33: Analyze the torsion of a member of circular cross-section (see
Fig. P8.43) for the state of shear stress distribution. Investigate the accuracy with
mesh refinements (by subdividing the mesh in Fig. P8.43 with horizontal and vertical
lines).

Solution: Here we use the mesh of linear triangles from Fig. P8.43. Input data and
partial output are included in Boxes 13.33a and 13.33b, respectively.

Box 13.33a: Input data for the circular cross-section bar of Problem 13.33.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Prob 8.43:  Torsion of a circular cross-section bar (triangles)
    0   2   0   0                         ITYPE,IGRAD,ITEM,NEIGN
    0   3   0   2                         IELTYP,NPE,MESH,NPRNT
    4   6                                 NEM, NNM
    1   2   4
    2   3   5
    2   5   4
    4   5   6                             NOD(I,J)
    0.0 0.0  0.5 0.0  1.0 0.0  0.35355 0.35355
    0.92388  0.38268  0.7071  0.7071      GLXY(I,J)
    3                                     NSPV
    3 1   5 1   6 1                       ISPV(I,J)
   0.0    0.0   0.0                       VSPV(I)
    0                                     NSSV
   1.0   0.0  0.0                         A10, A1X, A1Y
   1.0   0.0  0.0                         A20, A2X, A2Y
    0.0                                   A00
    0                                     ICONV
    10.0  0.0  0.0                        F0,  FX,  FY
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Box 13.33b: Edited output for the circular cross-section bar of Problem 13.33 for
two different meshes.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

    S O L U T I O N  (for the 4 linear element mesh):
  
     Node    x-coord.      y-coord.    Primary DOF
  
       1   0.00000E+00   0.00000E+00   0.26292E+01
       2   0.50000E+00   0.00000E+00   0.19179E+01
       3   0.10000E+01   0.00000E+00   0.00000E+00
       4   0.35355E+00   0.35355E+00   0.19179E+01
       5   0.92388E+00   0.38268E+00   0.00000E+00
       6   0.70710E+00   0.70710E+00   0.00000E+00
  
    The orientation of  gradient vector is measured from the positive x-axis

    x-coord.     y-coord.    a22(du/dy)  -a11(du/dx)   Flux Mgntd  Orientation
  
   0.2845E+00   0.1179E+00  -0.5892E+00   0.1423E+01   0.1540E+01    112.50
   0.8080E+00   0.1276E+00  -0.7630E+00   0.3836E+01   0.3911E+01    101.25
   0.5925E+00   0.2454E+00  -0.1364E+01   0.3293E+01   0.3565E+01    112.50
   0.6615E+00   0.4811E+00  -0.2173E+01   0.3252E+01   0.3911E+01    123.75
  

    S O L U T I O N  (for the 4 quadratic element mesh):

     Node    x-coord.      y-coord.    Primary DOF
  
       1   0.00000E+00   0.00000E+00   0.24893E+01
       2   0.25000E+00   0.00000E+00   0.23481E+01
       3   0.50000E+00   0.00000E+00   0.18618E+01
       4   0.75000E+00   0.00000E+00   0.10959E+01
       5   0.10000E+01   0.00000E+00   0.00000E+00
       6   0.17677E+00   0.17677E+00   0.23481E+01
       7   0.46194E+00   0.19134E+00   0.18811E+01
       8   0.73559E+00   0.14632E+00   0.10960E+01
       9   0.98078E+00   0.19509E+00   0.00000E+00
      10   0.35355E+00   0.35355E+00   0.18618E+01
      11   0.62360E+00   0.41668E+00   0.10960E+01
      12   0.92388E+00   0.38268E+00   0.00000E+00
      13   0.53033E+00   0.53033E+00   0.10959E+01
      14   0.83147E+00   0.55557E+00   0.00000E+00
      15   0.70711E+00   0.70711E+00   0.00000E+00
  
    
    x-coord.     y-coord.    a22(du/dy)  -a11(du/dx)   Flux Mgntd  Orientation
  
   0.3001E+00   0.1243E+00  -0.6209E+00   0.1499E+01   0.1623E+01    112.50
   0.6119E+00   0.2535E+00  -0.1293E+01   0.3122E+01   0.3379E+01    112.50
   0.8268E+00   0.1092E+00  -0.5720E+00   0.4143E+01   0.4182E+01     97.86
   0.6619E+00   0.5074E+00  -0.2525E+01   0.3334E+01   0.4182E+01    127.14
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Problem 13.36: Analyze the rectangular membrane problem in Fig. P8.48 with
4× 4 and 8× 8 meshes of linear rectangular elements in the computational domain.
Take a11 = a22 = 1 and f0 = 1.

Solution: Input data and partial output are included in Box 13.36.

Box 13.36: Input data and edited output for the 4×4 mesh of linear rectangular
elements.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Prob 13.36: Deflections of the membrane of Problem 8.48 (rectangles)
    0   2   0   0                                ITYPE,IGRAD,ITEM,NEIGN
    1   4   1   2                                IELTYP,NPE,MESH,NPRNT
    4   4                                        NX, NY
    0.0 0.0125 0.0125 0.0125 0.0125              DX(I)
    0.0 0.02  0.02  0.02  0.02                   DY(I)
    13                                           NSPV
    1 1   2 1   3 1   4 1   5 1   6 1  11 1
   16 1  21 1  22 1  23 1  24 1  25 1            ISPV(I,J)
    0.0   0.0   0.0   0.0   0.0   0.0  0.0
    0.0   0.0   0.109375  0.1875  0.234375  0.25 VSPV(I)
    0                                            NSSV
    1.0   0.0  0.0                               A10, A1X, A1Y
    1.0   0.0  0.0                               A20, A2X, A2Y
    0.0                                          A00
    0                                            ICONV
    1.0  0.0  0.0                                F0,  FX,  FY

      Node    x-coord.      y-coord.    Primary DOF 
      
       7   0.12500E-01   0.20000E-01   0.10669E-01
       8   0.25000E-01   0.20000E-01   0.19647E-01
       9   0.37500E-01   0.20000E-01   0.25612E-01
      10   0.50000E-01   0.20000E-01   0.27705E-01
      12   0.12500E-01   0.40000E-01   0.25698E-01
      13   0.25000E-01   0.40000E-01   0.47286E-01
      14   0.37500E-01   0.40000E-01   0.61702E-01
      15   0.50000E-01   0.40000E-01   0.66745E-01
      17   0.12500E-01   0.60000E-01   0.51737E-01
      18   0.25000E-01   0.60000E-01   0.95449E-01
      19   0.37500E-01   0.60000E-01   0.12351E+00
      20   0.50000E-01   0.60000E-01   0.13312E+00
      22   0.12500E-01   0.80000E-01   0.10938E+00
      23   0.25000E-01   0.80000E-01   0.18750E+00
      24   0.37500E-01   0.80000E-01   0.23438E+00
      25   0.50000E-01   0.80000E-01   0.25000E+00
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Problem 13.37: Repeat Problem 13.36 with equivalent meshes of quadratic
elements.

Solution: Input data and partial output are included in Box 13.37.

Box 13.37: Input data and edited output for the 2 × 2 mesh of nine-node
rectangular elements.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Prob 13.37: Deflections of the membrane of Problem 8.48 (rectangles)
    0   2   0   0                                ITYPE,IGRAD,ITEM,NEIGN
    1   4   1   2                                IELTYP,NPE,MESH,NPRNT
    4   4                                        NX, NY
    0.0 0.025 0.025                              DX(I)
    0.0 0.04  0.04                               DY(I)
    13                                           NSPV
    1 1   2 1   3 1   4 1   5 1   6 1  11 1
   16 1  21 1  22 1  23 1  24 1  25 1            ISPV(I,J)
    0.0   0.0   0.0   0.0   0.0   0.0  0.0
    0.0   0.0   0.109375  0.1875  0.234375  0.25 VSPV(I)
    0                                            NSSV
    1.0   0.0  0.0                               A10, A1X, A1Y
    1.0   0.0  0.0                               A20, A2X, A2Y
    0.0                                          A00
    0                                            ICONV
    1.0  0.0  0.0                                F0,  FX,  FY
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     Node    x-coord.      y-coord.    Primary DOF
 
       7   0.12500E-01   0.20000E-01   0.11083E-01
       8   0.25000E-01   0.20000E-01   0.20366E-01
       9   0.37500E-01   0.20000E-01   0.26477E-01
      10   0.50000E-01   0.20000E-01   0.28619E-01
      12   0.12500E-01   0.40000E-01   0.26859E-01
      13   0.25000E-01   0.40000E-01   0.48751E-01
      14   0.37500E-01   0.40000E-01   0.63252E-01
      15   0.50000E-01   0.40000E-01   0.68306E-01
      17   0.12500E-01   0.60000E-01   0.53199E-01
      18   0.25000E-01   0.60000E-01   0.97014E-01
      19   0.37500E-01   0.60000E-01   0.12487E+00
      20   0.50000E-01   0.60000E-01   0.13443E+00
      22   0.12500E-01   0.80000E-01   0.10938E+00
      23   0.25000E-01   0.80000E-01   0.18750E+00
      24   0.37500E-01   0.80000E-01   0.23438E+00
      25   0.50000E-01   0.80000E-01   0.25000E+00
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Problem 13.38: Determine the eigenvalues of the rectangular membrane in
Fig. P8.48 using a 4 × 4 mesh of linear rectangular elements in the half-domain.
Use c = 1.0.

Solution: Input data and partial output are included in Box 13.38.

Box 13.38: Input data and edited output for the 4×4 mesh of linear rectangular
elements.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

    Prob 8.48:  Frequencies of a square membrane (rectangles)
    0   2   2   1                           ITYPE,IGRAD,ITEM,NEIGN
    12  0                                   NVALU, NVCTR
    1   4   1   2                           IELTYP,NPE,MESH,NPRNT
    4   4                                   NX, NY
    0.0 0.0125 0.0125 0.0125 0.0125         DX(I)
    0.0 0.02  0.02  0.02  0.02              DY(I)
    13                                      NSPV
    1 1   2 1   3 1   4 1   5 1   6 1  11 1
   16 1  21 1  22 1  23 1  24 1  25 1       ISPV(I,J)
    1.0   0.0  0.0                          A10, A1X, A1Y
    1.0   0.0  0.0                          A20, A2X, A2Y
    0.0                                     A00
    0                                       ICONV
    1.0  0.0  0.0                           C0,  CX,  CY

 S O L U T I O N :

   Number of Jacobi iterations ..... NROT = 150

   Eigenvalue(  1) =   0.884549E+05   Frequency =  0.29741E+03

   Eigenvalue(  2) =   0.761512E+05   Frequency =  0.27596E+03

   Eigenvalue(  3) =   0.702742E+05   Frequency =  0.26509E+03

   Eigenvalue(  4) =   0.526383E+05   Frequency =  0.22943E+03

   Eigenvalue(  5) =   0.297534E+05   Frequency =  0.17249E+03

   Eigenvalue(  6) =   0.403291E+05   Frequency =  0.20082E+03

   Eigenvalue(  7) =   0.344521E+05   Frequency =  0.18561E+03

   Eigenvalue(  8) =   0.208052E+05   Frequency =  0.14424E+03

   Eigenvalue(  9) =   0.174488E+05   Frequency =  0.13209E+03

   Eigenvalue( 10) =   0.115714E+05   Frequency =  0.10757E+03

   Eigenvalue( 11) =   0.849973E+04   Frequency =  0.92194E+02

   Eigenvalue( 12) =   0.262268E+04   Frequency =  0.51212E+02
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Problem 13.39: Determine the eigenvalues of the circular membrane problem in
Fig. P8.49 with a mesh of four quadratic triangular elements. Use c = 1.0.

Solution: Input data and partial output are included in Box 13.39.

Box 13.39: Input data and edited output for the mesh of four quadratic elements.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Prob 13.39:  Vibrations of a circular membrane (quadratic triangles)
    0   2   2   1                                ITYPE,IGRAD,ITEM,NEIGN
   10   1
    0   6   0   0                                IELTYP,NPE,MESH,NPRNT
    4  15                                        NEM, NNM
    1   3  10  2  7  6
    3  12  10  8 11  7
    3   5  12  4  9  8
   10  12  15 11 14 13                           NOD(I,J)
    0.0     0.0      0.25    0.0      0.5     0.0
    0.75    0.0      1.0     0.0      0.17677 0.17677
    0.46194 0.19134  0.73559 0.14632  0.98078 0.19509
    0.35355 0.35355  0.62360 0.41668  0.92388 0.38268
    0.53033 0.53033  0.83147 0.55557  0.70711 0.70711  GLXY(I,J)
    5                                            NSPV
    5 1   9 1  12 1  14 1  15 1                  ISPV(I,J)
   1.0   0.0  0.0                                A10, A1X, A1Y
   1.0   0.0  0.0                                A20, A2X, A2Y
    0.0                                          A00
    0                                            ICONV
    1.0  0.0  0.0                               C0,  CX,  CY

   Eigenvalue(  1) =   0.587824E+03   Frequency =  0.24245E+02
   Eigenvalue(  2) =   0.554397E+03   Frequency =  0.23546E+02
   Eigenvalue(  3) =   0.489670E+03   Frequency =  0.22128E+02
   Eigenvalue(  4) =   0.280291E+03   Frequency =  0.16742E+02
   Eigenvalue(  9) =   0.313889E+02   Frequency =  0.56026E+01
   Eigenvalue( 10) =   0.579571E+01   Frequency =  0.24074E+01
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Problem 13.40: Determine the transient response of the problem in Fig. P8.49 (see
Problem 13.39). Assume zero initial conditions, c = 1 and f0 = 1. Use α = γ = 0.5,
∆t = 0.05, and plot the center deflection versus time t for t = 0 to t = 2.4.

Solution: Input data and partial output are included in Boxes 13.40a and 13.40b.

Box 13.40a: Input data for the transient response of a circular membrane (mesh
of four quadratic elements is used).

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Prob 13.40: Transient analysis of a circular membrane (quadr tri)
    0   2   2   0                           ITYPE,IGRAD,ITEM,NEIGN
    0   6   0   0                           IELTYP,NPE,MESH,NPRNT
    4  15                                   NEM, NNM
    1   3  10  2  7  6
    3  12  10  8 11  7
    3   5  12  4  9  8
   10  12  15 11 14 13                      NOD(I,J)
    0.0     0.0      0.25    0.0      0.5     0.0
    0.75    0.0      1.0     0.0      0.17677 0.17677
    0.46194 0.19134  0.73559 0.14632  0.98078 0.19509
    0.35355 0.35355  0.62360 0.41668  0.92388 0.38268
    0.53033 0.53033  0.83147 0.55557  0.70711 0.70711  GLXY(I,J)
    5                                       NSPV
    5 1   9 1  12 1  14 1  15 1             ISPV(I,J)
    0.0   0.0   0.0  0.0    0.0             VSPV(I)
    0                                       NSSV
   1.0   0.0  0.0                           A10, A1X, A1Y
   1.0   0.0  0.0                           A20, A2X, A2Y
    0.0                                     A00
    0                                       ICONV
   1.0  0.0  0.0                            F0,  FX,  FY
   1.0  0.0  0.0                            C0,  CX,  CY
    50  51  1     0                         NTIME,NSTP,INTVL,INTIAL
    0.05  0.5  0.5  1.0E-5                  DT,ALFA,GAMA,EPSLN
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Box 13.40b: Edited output for the transient response of a circular membrane
(mesh of four quadratic elements is used).

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 *TIME* = 0.10000E+01     Time Step Number = 20
       1   0.00000E+00   0.00000E+00   0.48343E+00
       2   0.25000E+00   0.00000E+00   0.42507E+00
       3   0.50000E+00   0.00000E+00   0.30774E+00
       4   0.75000E+00   0.00000E+00   0.16717E+00
       5   0.10000E+01   0.00000E+00   0.00000E+00

 *TIME* = 0.20000E+01     Time Step Number = 40
       1   0.00000E+00   0.00000E+00   0.22552E+00
       2   0.25000E+00   0.00000E+00   0.22546E+00
       3   0.50000E+00   0.00000E+00   0.18105E+00
       4   0.75000E+00   0.00000E+00   0.10533E+00
       5   0.10000E+01   0.00000E+00   0.00000E+00

 *TIME* = 0.50000E-01     Time Step Number =  1
  
     Node    x-coord.      y-coord.    Primary DOF
       
       1   0.00000E+00   0.00000E+00   0.50716E-03
       2   0.25000E+00   0.00000E+00   0.63430E-03
       3   0.50000E+00   0.00000E+00   0.41805E-03
       4   0.75000E+00   0.00000E+00   0.82401E-03
       5   0.10000E+01   0.00000E+00   0.00000E+00
       
 *TIME* = 0.50000E+00     Time Step Number = 10
       1   0.00000E+00   0.00000E+00   0.10904E+00
       2   0.25000E+00   0.00000E+00   0.11163E+00
       3   0.50000E+00   0.00000E+00   0.11476E+00
       4   0.75000E+00   0.00000E+00   0.83341E-01
       5   0.10000E+01   0.00000E+00   0.00000E+00
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Problem 13.41: Analyze the viscous flow problem in Problem 10.8 using an 8 × 8
mesh of linear rectangular elements. Plot the horizontal velocity u(0.5, y) versus y,
and the pressure along the top surface of the cavity. Investigate the effect of the
penalty parameter on the solution (see Fig. P10.8).

Solution: Input data and partial output are included in Boxe 13.41. Also, see Fig.
13.41 for plots of the velocity vx(0.5, y) versus y and P (x, 0.9375) versus x.

Box 13.41: Input data and partial output for the lid-driven cavity problem
(uniform mesh of 8× 8 rectangular elements is used).

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Prob. 13.41: Steady flow of viscous incompressible fluid in a cavity
    1   1   0   0   0                           ITYPE,ISTRS,ITEM,NEIGN
    1   4   1   0                               IEL, NPE, MESH, NPRNT
    8   8                                       NX, NY
    0.0  0.125 0.125 0.125 0.125
         0.125 0.125 0.125 0.125                X0, DX(I)
    0.0  0.125 0.125 0.125 0.125
         0.125 0.125 0.125 0.125                Y0, DY(I)
    64                                          NSPV
     1 1    1 2    2 1    2 2    3 1    3 2    4 1    4 2    5 1    5 2
     6 1    6 2    7 1    7 2    8 1    8 2    9 1    9 2   10 1   10 2
    18 1   18 2   19 1   19 2   27 1   27 2   28 1   28 1   36 1   36 2
    37 1   37 2   45 1   45 2   46 1   46 2   54 1   54 2   55 1   55 2
    63 1   63 2   64 1   64 2   72 1   72 2   73 1   73 2   74 1   74 2
    75 1   75 2   76 1   76 2   77 1   77 2   78 1   78 2   79 1   79 2
    80 1   80 2   81 1   81 2
     0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0
     0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0
     0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0
     0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0
     0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0   0.38268 0.0
     0.7071 0.0   0.92388 0.0    1.0    0.0   0.92388 0.0   0.7071  0.0
    0.38268 0.0    0.0    0.0
    0                                           NSSV
    1.0   1.0E2                                 AMU, PENLTY
    0.0   0.0   0.0                             F0, FX, FY

     Node    x-coord.      y-coord.    Value of u    Value of v

       5   0.50000E+00   0.00000E+00   0.00000E+00   0.00000E+00
      14   0.50000E+00   0.12500E+00  -0.56878E-01   0.29798E-02
      23   0.50000E+00   0.25000E+00  -0.10743E+00  -0.58367E-02
      32   0.50000E+00   0.37500E+00  -0.13835E+00   0.69427E-03
      41   0.50000E+00   0.50000E+00  -0.18925E+00  -0.57231E-02
      50   0.50000E+00   0.62500E+00  -0.16489E+00   0.95842E-03
      59   0.50000E+00   0.75000E+00  -0.61431E-01  -0.27417E-02
      68   0.50000E+00   0.87500E+00   0.29025E+00   0.14788E-02
      77   0.50000E+00   0.10000E+01   0.10000E+01   0.00000E+00
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Figure 13.41: Plots of (a) velocity vx(0.5, y) versus y and (b) P (x, 0.9375) versus x
for the lid-driven cavity (uniform mesh of 8× 8 rectangular elements
is used).

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.
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Problem 13.46: Analyze the cavity problem in Problem 13.41 for its transient
solution. Use ρ = 1.0, zero initial conditions, penalty parameter γ = 108, time
parameter α = 0.5, and a time step of ∆t = 0.005 to capture the evolution of
vx(0.5, y) with time.

Solution: Input data and partial output are included in Box 13.46.

Box 13.46: Input data and partial output for the transient analysis of the lid-
driven cavity problem (uniform mesh of 8× 8 rectangular elements).

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

    Prob. 13.46: Transient analysis of the lid-driven cavity problem               
    1   1   1   0                              ITYPE,ISTRS,ITEM,NEIGN           
    1   4   1   0                              IEL, NPE, MESH, NPRNT            
    8   8                                      NX, NY                           
    0.0  0.125 0.125 0.125 0.125                                                
         0.125 0.125 0.125 0.125               X0, DX(I)                        
    0.0  0.125 0.125 0.125 0.125                                                
         0.125 0.125 0.125 0.125               Y0, DY(I)                        
    64                                         NSPV                             
     1 1    1 2    2 1    2 2    3 1    3 2    4 1    4 2    5 1    5 2         
     6 1    6 2    7 1    7 2    8 1    8 2    9 1    9 2   10 1   10 2         
    18 1   18 2   19 1   19 2   27 1   27 2   28 1   28 1   36 1   36 2         
    37 1   37 2   45 1   45 2   46 1   46 2   54 1   54 2   55 1   55 2         
    63 1   63 2   64 1   64 2   72 1   72 2   73 1   73 2   74 1   74 2         
    75 1   75 2   76 1   76 2   77 1   77 2   78 1   78 2   79 1   79 2         
    80 1   80 2   81 1   81 2                                                   
     0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0         
     0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0         
     0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0         
     0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0         
     0.0    0.0    0.0    0.0    0.0    0.0    0.0    0.0   0.38268 0.0         
     0.7071 0.0   0.92388 0.0    1.0    0.0   0.92388 0.0   0.7071  0.0         
    0.38268 0.0    0.0    0.0                                                   
    0                                          NSSV                             
    1.0   1.0E8                                AMU, PENLTY                      
    0.0   0.0   0.0                            F0, FX, FY                       
    1.0   0.0   0.0                            C0,  CX,  CY                     
    20    21    1   0                          NTIME,NSTP,INTVL,INTIAL          
    0.005  0.5  0.5  1.0E-3                    DT,ALFA,GAMA,EPSLN               
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Problem 13.48: Analyze the plane elasticity problem in Fig. P11.7 using 10 × 4
mesh of linear rectangular elements. Evaluate the results (i.e., displacements and
stresses) qualitatively. Use the plane stress assumption.

Solution: The loads at nodes 11, 22, 44 and 55 were calculated in the solution to
Problem 11.7. The input data and partial output are included in Boxes 13.48a
through 13.48c. Note that the vertical deflection as per the classical beam theory
is (for a beam fixed at the left end and subjected to pure bending moment at the
right end)

uy(x) = −
M0x

2

2EI
where I =

hb3

12
=
2

3

Hence, the vertical deflection at node 11 or 55 as per the beam theory is uy(6) =
−0.54× 10−3cm. The elasticity solution predicted with the chosen mesh is uy(6, 0) =
−0.5144× 10−3cm. Of course, the boundary conditions of elasticity are not quite the
same as the “fixed” boundary condition used in arriving at the beam deflection.

Box 13.48a: Input data for the static analysis of the plane stress problem in Fig.
P11.7 (nonuniform mesh of 10× 4 rectangular elements is used).

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

  Problem 13.48: Bending of a cantilever plate using elasticity eqs
    2   1   0   0                            ITYPE,IGRAD,ITEM,NEIGN
    1   4   1   0                            IELTYP,NPE,MESH,NPRNT
    10  4                                    NX, NY
    0.0 0.125 0.125 0.25 0.25 0.5 0.75 0.75
    1.0 1.0   1.25                           X0,DX(I)
    0.0 0.5  0.5  0.5  0.5                   Y0,DY(I)
    6                                        NSPV
    1  1   12 1   23 1   23 2   34 1   45 1  ISPV
    0.0    0.0    0.0    0.0    0.0    0.0   VSPV
    4                                        NSSV
    11  1   22  1  44  1  55  1              ISSV
   -187.5  -225.0  225.0  187.5              VSSV
    1                                        LNSTRS
    30.0E06  30.0E06  0.3  11.53846E06  1.0  E1,E2,ANU12,G12,THKNS
     0.0      0.0     0.0                    F0, FX, FY

cmN600cm,1
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Box 13.48b: Deflections of the plane stress problem in Fig. P11.7 (nonuniform
mesh of 10× 4 rectangular elements is used).

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

     Node    x-coord.      y-coord.     Value of u   Value of v

       1   0.00000E+00   0.00000E+00   0.00000E+00  -0.44216E-05
       2   0.12500E+00   0.00000E+00  -0.37352E-05  -0.46542E-05
       3   0.25000E+00   0.00000E+00  -0.74728E-05  -0.53515E-05
       4   0.50000E+00   0.00000E+00  -0.14897E-04  -0.81369E-05
       5   0.75000E+00   0.00000E+00  -0.22359E-04  -0.12776E-04
       6   0.12500E+01   0.00000E+00  -0.36942E-04  -0.27563E-04
       7   0.20000E+01   0.00000E+00  -0.58041E-04  -0.63135E-04
       8   0.27500E+01   0.00000E+00  -0.79386E-04  -0.11462E-03
       9   0.37500E+01   0.00000E+00  -0.10646E-03  -0.20746E-03
      10   0.47500E+01   0.00000E+00  -0.13396E-03  -0.32777E-03
      11   0.60000E+01   0.00000E+00  -0.16520E-03  -0.51440E-03
      12   0.00000E+00   0.50000E+00   0.00000E+00  -0.10905E-05
      13   0.12500E+00   0.50000E+00  -0.18461E-05  -0.13241E-05
      14   0.25000E+00   0.50000E+00  -0.36899E-05  -0.20262E-05
      15   0.50000E+00   0.50000E+00  -0.73777E-05  -0.48223E-05
      16   0.75000E+00   0.50000E+00  -0.11029E-04  -0.94826E-05
      17   0.12500E+01   0.50000E+00  -0.18282E-04  -0.24330E-04
      18   0.20000E+01   0.50000E+00  -0.29024E-04  -0.59949E-04
      19   0.27500E+01   0.50000E+00  -0.39502E-04  -0.11150E-03
      20   0.37500E+01   0.50000E+00  -0.53253E-04  -0.20443E-03
      21   0.47500E+01   0.50000E+00  -0.66617E-04  -0.32466E-03
      22   0.60000E+01   0.50000E+00  -0.84050E-04  -0.51167E-03
      35   0.12500E+00   0.15000E+01   0.18461E-05  -0.13241E-05
      36   0.25000E+00   0.15000E+01   0.36899E-05  -0.20262E-05
      37   0.50000E+00   0.15000E+01   0.73777E-05  -0.48223E-05
      38   0.75000E+00   0.15000E+01   0.11029E-04  -0.94826E-05
      39   0.12500E+01   0.15000E+01   0.18282E-04  -0.24330E-04
      40   0.20000E+01   0.15000E+01   0.29024E-04  -0.59949E-04
      41   0.27500E+01   0.15000E+01   0.39502E-04  -0.11150E-03
      42   0.37500E+01   0.15000E+01   0.53253E-04  -0.20443E-03
      43   0.47500E+01   0.15000E+01   0.66617E-04  -0.32466E-03
      44   0.60000E+01   0.15000E+01   0.84050E-04  -0.51167E-03
      45   0.00000E+00   0.20000E+01   0.00000E+00  -0.44216E-05
      46   0.12500E+00   0.20000E+01   0.37352E-05  -0.46542E-05
      47   0.25000E+00   0.20000E+01   0.74728E-05  -0.53515E-05
      48   0.50000E+00   0.20000E+01   0.14897E-04  -0.81369E-05
      49   0.75000E+00   0.20000E+01   0.22359E-04  -0.12776E-04
      50   0.12500E+01   0.20000E+01   0.36942E-04  -0.27563E-04
      51   0.20000E+01   0.20000E+01   0.58041E-04  -0.63135E-04
      52   0.27500E+01   0.20000E+01   0.79386E-04  -0.11462E-03
      53   0.37500E+01   0.20000E+01   0.10646E-03  -0.20746E-03
      54   0.47500E+01   0.20000E+01   0.13396E-03  -0.32777E-03
      55   0.60000E+01   0.20000E+01   0.16520E-03  -0.51440E-03
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Box 13.48c: Stresses in the plane stress problem in Fig. P11.7 (nonuniform mesh
of 10× 4 rectangular elements is used).

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

  
  
     x-coord.     y-coord.     sigma-x      sigma-y     sigma-xy
  
   0.6250E-01   0.2500E+00  -0.6701E+03  -0.1195E+01   0.2801E+00
   0.1875E+00   0.2500E+00  -0.6702E+03  -0.1392E+01   0.8576E+00
   0.3750E+00   0.2500E+00  -0.6670E+03  -0.8944E+00   0.1599E+01
   0.6250E+00   0.2500E+00  -0.6674E+03  -0.1988E+01   0.2901E+01
   0.1000E+01   0.2500E+00  -0.6553E+03  -0.8439E+00   0.4113E+01
   0.1625E+01   0.2500E+00  -0.6363E+03   0.1668E+01   0.2497E+01
   0.2375E+01   0.2500E+00  -0.6370E+03  -0.1882E+01   0.2429E+01
   0.3250E+01   0.2500E+00  -0.6121E+03   0.1002E+01   0.2420E+01
   0.4250E+01   0.2500E+00  -0.6127E+03   0.5985E+00   0.3200E+01
   0.5375E+01   0.2500E+00  -0.5842E+03   0.2066E-01  -0.1109E+02
   0.6250E-01   0.7500E+00  -0.2219E+03  -0.1148E+01  -0.2801E+00
   0.1875E+00   0.7500E+00  -0.2216E+03  -0.1015E+01  -0.8576E+00
   0.3750E+00   0.7500E+00  -0.2217E+03  -0.1320E+01  -0.1599E+01
   0.6250E+00   0.7500E+00  -0.2194E+03  -0.1218E+01  -0.2901E+01
   0.1000E+01   0.7500E+00  -0.2176E+03  -0.6825E-01  -0.4113E+01
   0.1625E+01   0.7500E+00  -0.2148E+03   0.2441E+00  -0.2497E+01
   0.2375E+01   0.7500E+00  -0.2094E+03   0.3678E+00  -0.2429E+01
   0.3250E+01   0.7500E+00  -0.2066E+03  -0.1173E+01  -0.2420E+01
   0.4250E+01   0.7500E+00  -0.1993E+03   0.3700E+01  -0.3200E+01
   0.5375E+01   0.7500E+00  -0.2097E+03  -0.1637E+01   0.1109E+02
   0.6250E-01   0.1250E+01   0.2219E+03   0.1148E+01  -0.2801E+00
   0.1875E+00   0.1250E+01   0.2216E+03   0.1015E+01  -0.8576E+00
   0.3750E+00   0.1250E+01   0.2217E+03   0.1320E+01  -0.1599E+01
   0.6250E+00   0.1250E+01   0.2194E+03   0.1218E+01  -0.2901E+01
   0.1000E+01   0.1250E+01   0.2176E+03   0.6825E-01  -0.4113E+01
   0.1625E+01   0.1250E+01   0.2148E+03  -0.2441E+00  -0.2497E+01
   0.2375E+01   0.1250E+01   0.2094E+03  -0.3678E+00  -0.2429E+01
   0.3250E+01   0.1250E+01   0.2066E+03   0.1173E+01  -0.2420E+01
   0.4250E+01   0.1250E+01   0.1993E+03  -0.3700E+01  -0.3200E+01
   0.5375E+01   0.1250E+01   0.2097E+03   0.1637E+01   0.1109E+02
   0.6250E-01   0.1750E+01   0.6701E+03   0.1195E+01   0.2801E+00
   0.1875E+00   0.1750E+01   0.6702E+03   0.1392E+01   0.8576E+00
   0.3750E+00   0.1750E+01   0.6670E+03   0.8944E+00   0.1599E+01
   0.6250E+00   0.1750E+01   0.6674E+03   0.1988E+01   0.2901E+01
   0.1000E+01   0.1750E+01   0.6553E+03   0.8439E+00   0.4113E+01
   0.1625E+01   0.1750E+01   0.6363E+03  -0.1668E+01   0.2497E+01
   0.2375E+01   0.1750E+01   0.6370E+03   0.1882E+01   0.2429E+01
   0.3250E+01   0.1750E+01   0.6121E+03  -0.1002E+01   0.2420E+01
   0.4250E+01   0.1750E+01   0.6127E+03  -0.5985E+00   0.3200E+01
   0.5375E+01   0.1750E+01   0.5842E+03  -0.2066E-01  -0.1109E+02
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Problem 13.60: Analyze the plane elasticity problem in Fig. P11.7 for natural
frequencies. Use a density of ρ = 0.0088 kg/cm3.

Solution: The input data and partial output are included in Box 13.60.

Box 13.60: Input data and partial output for the vibration analysis of the plane
stress problem in Fig. P11.7 (nonuniform mesh of 10× 4 rectangular
elements is used).

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

Problem 13.60: Vibration of a cantilever plate using plane stress element
    2   1   2   1                                ITYPE,IGRAD,ITEM,NEIGN
   10   0                                        NVALU, NVCTR
    1   4   1   0                                IELTYP,NPE,MESH,NPRNT
    10  4                                        NX, NY
    0.0 0.125 0.125 0.25 0.25 0.5 0.75 0.75
    1.0 1.0   1.25                               X0,DX(I)
    0.0 0.5  0.5  0.5  0.5                       Y0,DY(I)
    6                                            NSPV
    1  1   12 1   23 1   23 2   34 1   45 1      ISPV
    1                                            LNSTRS
    30.0E06  30.0E06  0.3  11.53846E06  1.0      E1,E2,ANU12,G12,THKNS
     0.0088   0.0     0.0                        C0, CX, CY

            OUTPUT  from  program *** FEM2D *** by J. N. REDDY
                 
     MATERIAL PROPERTIES OF THE SOLID ANALYZED:

        Thickness of the body, THKNS ............=  0.1000E+01
        Modulus of elasticity, E1 ...............=  0.3000E+08
        Modulus of elasticity, E2 ...............=  0.3000E+08
        Poisson s ratio, ANU12 ..................=  0.3000E+00
        Shear modulus, G12 ......................=  0.1154E+08

     PARAMETERS OF THE DYNAMIC ANALYSIS:

        Coefficient, C0 .........................=  0.8800E-02
        Coefficient, CX .........................=  0.0000E+00
        Coefficient, CY .........................=  0.0000E+00

 (Only ten frequencies were requested - these are the highest ten)

   Eigenvalue(  1) =   0.126100E+13   Frequency =  0.11229E+07
   Eigenvalue(  2) =   0.123934E+13   Frequency =  0.11133E+07
   Eigenvalue(  3) =   0.121864E+13   Frequency =  0.11039E+07
   Eigenvalue(  4) =   0.120075E+13   Frequency =  0.10958E+07
   Eigenvalue(  5) =   0.119229E+13   Frequency =  0.10919E+07
   Eigenvalue(  6) =   0.887367E+12   Frequency =  0.94200E+06
   Eigenvalue(  7) =   0.875914E+12   Frequency =  0.93590E+06
   Eigenvalue(  8) =   0.774362E+12   Frequency =  0.87998E+06
   Eigenvalue(  9) =   0.773088E+12   Frequency =  0.87925E+06
   Eigenvalue( 10) =   0.531354E+12   Frequency =  0.72894E+06
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Problem 13.67: Analyze the plate problem in Fig. P12.2 using (a) 2×4 and (b) 4×8
meshes of CPT(N) elements in the half-plate, and compare the maximum deflections
and stresses. Use E = 107 psi, ν = 0.25, h = 0.25 in. and q0 = 10 lb/in.

Solution: Note that a plate strip of unit width along the x-axis may be modeled. The
input data and partial output are included in Boxes 13.67a and 13.67b.

Box 13.67a: Input data and partial output for the plate problem in Fig. P12.2
(uniform mesh of 2× 4 elements is used).

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

    Problem 13.67a: Bending of a cantilever plate--CPT(N)
    4   1   0   0                             ITYPE,IGRAD,ITEM,NEIGN
    1   4   1   0                             IEL, NPE, MESH, NPRNT
    2   4                                     NX, NY
    0.0  2.5  2.5                             X0, DX(I)
    0.0  2.5  2.5  2.5  2.5                   Y0, DY(I)
    9                                         NSPV
    1  1   1  2   1  3   2  1   2  2   2  3
    3  1   3  2   3  3                        ISPV(I,J)
    0.0    0.0    0.0    0.0    0.0    0.0
    0.0    0.0    0.0                         VSPV(I)
    3                                         NSSV
    13  1  14  1  15  1                       ISSV(I,J)
    12.5   25.0   12.5                        VSSV(I)
    1.0E7 1.0E7 0.25 0.4E7 0.4E7 0.4E7 0.25   E1,E2,ANU12,G12,...
    0.0   0.0   0.0                           F0, FX, FY

     Node    x-coord.      y-coord.     deflec. w    x-rotation    y-rotation
  
       4   0.00000E+00   0.25000E+01   0.19679E-01   0.31193E-02   0.19671E-01
       5   0.25000E+01   0.25000E+01   0.22091E-01   0.75123E-16   0.20484E-01
       6   0.50000E+01   0.25000E+01   0.19679E-01  -0.31193E-02   0.19671E-01
       7   0.00000E+00   0.50000E+01   0.75492E-01   0.26409E-02   0.34988E-01
       8   0.25000E+01   0.50000E+01   0.78068E-01   0.16786E-15   0.34732E-01
       9   0.50000E+01   0.50000E+01   0.75492E-01  -0.26409E-02   0.34988E-01
      10   0.00000E+00   0.75000E+01   0.15559E+00   0.16643E-02   0.44033E-01
      11   0.25000E+01   0.75000E+01   0.15731E+00   0.27205E-15   0.43639E-01
      12   0.50000E+01   0.75000E+01   0.15559E+00  -0.16643E-02   0.44033E-01
      13   0.00000E+00   0.10000E+02   0.24768E+00   0.91430E-03   0.47094E-01
      14   0.25000E+01   0.10000E+02   0.24878E+00   0.20634E-15   0.46846E-01
      15   0.50000E+01   0.10000E+02   0.24768E+00  -0.91430E-03   0.47094E-01
         _________________________________________________________________

           x-coord.     y-coord.     sigma-x      sigma-y     sigma-xy
         _________________________________________________________________

         0.5283E+00   0.5283E+00  -0.1789E+04  -0.8624E+04  -0.1198E+04
         0.5283E+00   0.1972E+01  -0.5910E+03  -0.7845E+04  -0.1498E+04
         0.1972E+01   0.5283E+00  -0.2230E+04  -0.9562E+04  -0.4551E+02
         0.1972E+01   0.1972E+01  -0.1294E+04  -0.7569E+04  -0.3459E+03
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Box 13.67b: Input data and partial output for the plate problem in Fig. P12.2
(uniform mesh of 4× 8 CPT(N) elements is used).

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Problem 13.67b: Bending of a cantilever plate--CPT(N)
    4   1   0   0                             ITYPE,IGRAD,ITEM,NEIGN
    1   4   1   0                             IEL, NPE, MESH, NPRNT
    4   8                                     NX, NY
    0.0  1.25  1.25  1.25  1.25               X0, DX(I)
    0.0  1.25  1.25  1.25  1.25
         1.25  1.25  1.25  1.25               Y0, DY(I)
    15                                        NSPV
    1  1   1  2   1  3   2  1   2  2   2  3
    3  1   3  2   3  3   4  1   4  2   4  3
    5  1   5  2   5  3                        ISPV(I,J)
    0.0    0.0    0.0    0.0    0.0    0.0
    0.0    0.0    0.0    0.0    0.0    0.0
    0.0    0.0    0.0                         VSPV(I)
    5                                         NSSV
    41  1  42  1  43  1  44  1  45  1         ISSV(I,J)
    6.25   12.5   12.5   12.5   6.25          VSSV(I)
    1.0E7 1.0E7 0.25 0.4E7 0.4E7 0.4E7 0.25   E1,E2,ANU12,G12,...
    0.0   0.0   0.0                           F0, FX, FY

     Node    x-coord.      y-coord.     deflec. w    x-rotation    y-rotation
  
       6   0.00000E+00   0.12500E+01   0.45692E-02   0.10728E-02   0.48607E-02
       7   0.12500E+01   0.12500E+01   0.56632E-02   0.22657E-03   0.54417E-02
       8   0.25000E+01   0.12500E+01   0.58457E-02  -0.34104E-15   0.56179E-02
       9   0.37500E+01   0.12500E+01   0.56632E-02  -0.22657E-03   0.54417E-02
      10   0.50000E+01   0.12500E+01   0.45692E-02  -0.10728E-02   0.48607E-02
      15   0.50000E+01   0.25000E+01   0.19435E-01  -0.14134E-02   0.98734E-02
      20   0.50000E+01   0.37500E+01   0.43563E-01  -0.14550E-02   0.14111E-01
      25   0.50000E+01   0.50000E+01   0.75357E-01  -0.13065E-02   0.17546E-01
      30   0.50000E+01   0.62500E+01   0.11323E+00  -0.10749E-02   0.20196E-01
      35   0.50000E+01   0.75000E+01   0.15563E+00  -0.82104E-03   0.22069E-01
      40   0.50000E+01   0.87500E+01   0.20100E+00  -0.59641E-03   0.23171E-01
      41   0.00000E+00   0.10000E+02   0.24783E+00   0.46503E-03   0.23543E-01
      42   0.12500E+01   0.10000E+02   0.24863E+00   0.30049E-03   0.23485E-01
      43   0.25000E+01   0.10000E+02   0.24894E+00  -0.65314E-14   0.23473E-01
      44   0.37500E+01   0.10000E+02   0.24863E+00  -0.30049E-03   0.23485E-01
      45   0.50000E+01   0.10000E+02   0.24783E+00  -0.46503E-03   0.23543E-01

    x-coord.     y-coord.     sigma-x      sigma-y     sigma-xy
  
   0.2642E+00   0.2642E+00  -0.1557E+04  -0.7856E+04  -0.1596E+04
   0.2642E+00   0.9858E+00  -0.6436E+03  -0.8642E+04  -0.2455E+04
   0.9858E+00   0.2642E+00  -0.2176E+04  -0.9368E+04  -0.3455E+03
   0.9858E+00   0.9858E+00  -0.1526E+04  -0.8578E+04  -0.1204E+04
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Problem 13.69: Repeat Problem 13.67 with an 4× 8 mesh of linear plate elements
and a 2× 4 mesh of nine-node quadratic plate elements based on the first-order plate
theory.

Solution: The input data and partial output are included in Boxes 13.69a and 13.69b.

Box 13.69a: Input data and partial output for the plate problem in Fig. P12.2
(uniform mesh of 4× 8 of Q4 elements is used).

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Problem 13.69a: Bending of a cantilever plate--SDT
    3   1   0   0                             ITYPE,IGRAD,ITEM,NEIGN
    1   4   1   0                             IEL, NPE, MESH, NPRNT
    4   8                                     NX, NY
    0.0  1.25  1.25  1.25  1.25               X0, DX(I)
    0.0  1.25  1.25  1.25  1.25
         1.25  1.25  1.25  1.25               Y0, DY(I)
    15                                        NSPV
    1  1   1  2   1  3   2  1   2  2   2  3
    3  1   3  2   3  3   4  1   4  2   4  3
    5  1   5  2   5  3                        ISPV(I,J)
    0.0    0.0    0.0    0.0    0.0    0.0
    0.0    0.0    0.0    0.0    0.0    0.0
    0.0    0.0    0.0                         VSPV(I)
    5                                         NSSV
    41  1  42  1  43  1  44  1  45  1         ISSV(I,J)
    6.25   12.5   12.5   12.5   6.25          VSSV(I)
    1.0E7 1.0E7 0.25 0.4E7 0.4E7 0.4E7 0.25   E1,E2,ANU12,G12,...
    0.0   0.0   0.0                           F0, FX, FY

     Node    x-coord.      y-coord.     deflec. w    x-rotation    y-rotation

      10   0.50000E+01   0.12500E+01   0.44671E-02   0.17611E-02  -0.78276E-02
      15   0.50000E+01   0.25000E+01   0.19099E-01   0.23954E-02  -0.15928E-01
      20   0.50000E+01   0.37500E+01   0.43181E-01   0.24843E-02  -0.22636E-01
      25   0.50000E+01   0.50000E+01   0.74983E-01   0.21559E-02  -0.28075E-01
      30   0.50000E+01   0.62500E+01   0.11286E+00   0.17640E-02  -0.32297E-01
      41   0.00000E+00   0.10000E+02   0.24742E+00  -0.68934E-03  -0.37657E-01
      42   0.12500E+01   0.10000E+02   0.24815E+00  -0.47107E-03  -0.37669E-01
      43   0.25000E+01   0.10000E+02   0.24845E+00  -0.18010E-14  -0.37563E-01
      44   0.37500E+01   0.10000E+02   0.24815E+00   0.47107E-03  -0.37669E-01
      45   0.50000E+01   0.10000E+02   0.24742E+00   0.68934E-03  -0.37657E-01

    x-coord.     y-coord.     sigma-x      sigma-y     sigma-xy
                              sigma-xz     sigma-yz
  
   0.6250E+00   0.6250E+00  -0.1319E+04  -0.8449E+04  -0.5037E+03
                            -0.7114E+02  -0.7884E+02
   0.1875E+01   0.6250E+00  -0.2301E+04  -0.9551E+04  -0.2611E+03
                            -0.7114E+02   0.1748E+03
   0.3125E+01   0.6250E+00  -0.2301E+04  -0.9551E+04   0.2611E+03
                             0.7114E+02   0.1748E+03
   0.4375E+01   0.6250E+00  -0.1319E+04  -0.8449E+04   0.5037E+03
                             0.7114E+02  -0.7884E+02
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Box 13.69b: Input data and partial output for the plate problem in Fig. P12.2
(uniform mesh of 2× 4 of Q9 elements is used).

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Problem 13.69b: Bending of a cantilever plate--FSDT
    3   1   0   0                             ITYPE,IGRAD,ITEM,NEIGN
    2   9   1   0                             IEL, NPE, MESH, NPRNT
    2   4                                     NX, NY
    0.0  2.5   2.5                            X0, DX(I)
    0.0  2.5   2.5  2.5  2.5                  Y0, DY(I)
    15                                        NSPV
    1  1   1  2   1  3   2  1   2  2   2  3
    3  1   3  2   3  3   4  1   4  2   4  3
    5  1   5  2   5  3                        ISPV(I,J)
    0.0    0.0    0.0    0.0    0.0    0.0
    0.0    0.0    0.0    0.0    0.0    0.0
    0.0    0.0    0.0                         VSPV(I)
    5                                         NSSV
    41  1  42  1  43  1  44  1  45  1         ISSV(I,J)
    6.25   12.5   12.5   12.5   6.25          VSSV(I)
    1.0E7 1.0E7 0.25 0.4E7 0.4E7 0.4E7 0.25   E1,E2,ANU12,G12,...
    0.0   0.0   0.0                           F0, FX, FY

     Node    x-coord.      y-coord.     deflec. w    x-rotation    y-rotation
  
      10   0.50000E+01   0.12500E+01   0.44331E-02   0.18711E-02  -0.80203E-02
      15   0.50000E+01   0.25000E+01   0.19219E-01   0.24401E-02  -0.16063E-01
      20   0.50000E+01   0.37500E+01   0.43537E-01   0.24463E-02  -0.22652E-01
      25   0.50000E+01   0.50000E+01   0.75537E-01   0.21228E-02  -0.28099E-01
      30   0.50000E+01   0.62500E+01   0.11358E+00   0.17336E-02  -0.32312E-01
      40   0.50000E+01   0.87500E+01   0.20176E+00   0.85669E-03  -0.37089E-01
      41   0.00000E+00   0.10000E+02   0.24885E+00  -0.32113E-03  -0.37601E-01
      42   0.12500E+01   0.10000E+02   0.24934E+00  -0.41224E-03  -0.37695E-01
      43   0.25000E+01   0.10000E+02   0.24972E+00  -0.30984E-13  -0.37504E-01
      44   0.37500E+01   0.10000E+02   0.24934E+00   0.41224E-03  -0.37695E-01
      45   0.50000E+01   0.10000E+02   0.24885E+00   0.32113E-03  -0.37601E-01

    x-coord.     y-coord.     sigma-x      sigma-y     sigma-xy
                              sigma-xz     sigma-yz
 
   0.5283E+00   0.5283E+00  -0.1224E+04  -0.8471E+04  -0.5521E+03
                            -0.5876E+02  -0.5962E+02
   0.5283E+00   0.1972E+01  -0.2164E+03  -0.7983E+04  -0.3795E+03
                            -0.3272E+02   0.3187E+02
   0.1972E+01   0.5283E+00  -0.2372E+04  -0.9714E+04  -0.2572E+03
                            -0.8276E+02   0.1556E+03
   0.1972E+01   0.1972E+01  -0.1279E+04  -0.7431E+04  -0.4473E+03
                            -0.8725E+01   0.6413E+02
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Problem 13.70: Analyze the plate bending problem in Fig. P12.3 with the CPT
(C) elements. Use the mesh shown in the figure, and take E = 107 psi, ν = 0.25,
h = 0.25 in. and q0 = 10 lb/in

2.

Solution: The input data and partial output are included in Box 13.70 for 2×2 mesh
of CPT(C) elements. We take a = b = 10 in.

Box 13.70: Input data and partial output for the plate problem of Fig. P12.3.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.
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    Problem 13.70: Bending of a square plate (Prob 12.3)--CPT(C)
    5   1   0   0                             ITYPE,IGRAD,ITEM,NEIGN
    1   4   1   0                             IEL, NPE, MESH, NPRNT
    2   2                                     NX, NY
    0.0  2.5   2.5                            X0, DX(I)
    0.0  2.5   2.5                            Y0, DY(I)
    12                                        NSPV
    1  2   1  3   1  4   2  3   3  1   3  3
    4  2   6  1   6  3   7  2   9  1   9  3   ISPV(I,J)
    0.0    0.0    0.0    0.0    0.0    0.0
    0.0    0.0    0.0    0.0    0.0    0.0
    0                                         NSSV
    1.0E7 1.0E7 0.25 0.4E7 0.4E7 0.4E7 0.25   E1,E2,ANU12,G12,…,THKNS
    10.0   0.0   0.0                          F0, FX, FY

     Node    x-coord.      y-coord.     deflec. w    x-rotation    y-rotation
  
       1   0.00000E+00   0.00000E+00   0.10189E+00   0.00000E+00   0.00000E+00
       2   0.25000E+01   0.00000E+00   0.71852E-01  -0.28389E-01   0.00000E+00
       3   0.50000E+01   0.00000E+00   0.00000E+00  -0.40707E-01   0.00000E+00
       4   0.00000E+00   0.25000E+01   0.10507E+00   0.00000E+00   0.24985E-02
       5   0.25000E+01   0.25000E+01   0.73270E-01  -0.28671E-01   0.14430E-02
       6   0.50000E+01   0.25000E+01   0.00000E+00  -0.40833E-01   0.00000E+00
       7   0.00000E+00   0.50000E+01   0.11635E+00   0.00000E+00   0.73965E-04
       8   0.25000E+01   0.50000E+01   0.79587E-01  -0.30646E-01   0.43428E-02
       9   0.50000E+01   0.50000E+01   0.00000E+00  -0.44033E-01   0.00000E+00

     x-coord.     y-coord.     sigma-x      sigma-y     sigma-xy
   0.5283E+00   0.5283E+00   0.1284E+05   0.2055E+04   0.8893E+03
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Problem 13.71: Analyze the plate bending problem in Fig. P12.4 with the CPT
(C) elements. Use the mesh shown in the figure, and take E = 107 psi, ν = 0.25,
h = 0.25 in. and q0 = 10 lb/in

2.

Solution: The input data and partial output are included in Box 13.71 for 4×2 mesh
of CPT(C) elements. We take a = 10 in. and b = 5 in.

Box 13.71: Input data and partial output for the plate problem of Fig. P12.4.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.
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    Problem 13.71: Bending of a rectangular plate--CPT(C)
    5   1   0   0                             ITYPE,IGRAD,ITEM,NEIGN
    1   4   1   0                             IEL, NPE, MESH, NPRNT
    4   2                                     NX, NY
    0.0  2.5   2.5   2.5   2.5                X0, DX(I)
    0.0  2.5   2.5                            Y0, DY(I)
    24                                        NSPV
    1  1   1  2   1  3   1  4   2  3   3  3
    4  3   5  3   6  1   6  2   6  3   6  4
    11 1  11  2  11  3  11  4  12  1  12  2
    13 1  13  2  14  1  14  2  15  1  15  2   ISPV(I,J)
    0.0    0.0    0.0    0.0    0.0    0.0
    0.0    0.0    0.0    0.0    0.0    0.0
    0.0    0.0    0.0    0.0    0.0    0.0
    0.0    0.0    0.0    0.0    0.0    0.0    VSPV(I)
    0                                         NSSV
    1.0E7 1.0E7 0.25 0.4E7 0.4E7 0.4E7 0.25   E1,E2,ANU12,G12,...
    0.0   0.5   0.0                           F0, FX, FY

     Node    x-coord.      y-coord.     deflec. w    x-rotation    y-rotation
       1   0.00000E+00   0.00000E+00   0.00000E+00   0.00000E+00   0.00000E+00
       2   0.25000E+01   0.00000E+00   0.48452E-02   0.43387E-02   0.00000E+00
       3   0.50000E+01   0.00000E+00   0.13736E-01   0.49391E-02   0.00000E+00
       4   0.75000E+01   0.00000E+00   0.22636E-01   0.43107E-02   0.00000E+00
       5   0.10000E+02   0.00000E+00   0.31321E-01   0.27373E-02   0.00000E+00

             x-coord.     y-coord.     sigma-x      sigma-y     sigma-xy
           0.5283E+00   0.5283E+00  -0.2276E+04  -0.4638E+03  -0.8866E+02
           0.9472E+01   0.1972E+01   0.5033E+03   0.2797E+04   0.1672E+04
           0.4472E+01   0.4472E+01   0.8189E+02   0.3101E+03   0.2266E+04
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Problem 13.72: Analyze the plate bending problem in Fig. P12.8 with the CPT
(C) elements. Use the data shown in the figure.

Solution: The input data and partial output are included in Box 13.72 for 2×2 mesh
of CPT(C) elements.

Box 13.72: Input data and partial output for the plate problem of Fig. P12.8.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

    Problem 13.72: Bending of a rectangular plate (Prob 12.8)--CPT(C)           
    5   1   0   0                             ITYPE,IGRAD,ITEM,NEIGN            
    1   4   1   0                             IEL, NPE, MESH, NPRNT             
    2   2                                     NX, NY                            
    0.0  5.0   5.0                            X0, DX(I)                         
    0.0  3.75  3.75                           Y0, DY(I)                         
    21                                        NSPV                              
    1  2   1  3   1  4   2  3   3  1   3  2                                     
    3  3   3  4   4  2   6  1   6  2   6  3                                     
    6  4   7  1   7  2   8  1   8  2   9  1                                     
    9  2   9  3   9  4                        ISPV(I,J)                         
    0.0    0.0    0.0    0.0    0.0    0.0                                      
    0.0    0.0    0.0    0.0    0.0    0.0                                      
    0.0    0.0    0.0    0.0    0.0    0.0                                      
    0.0    0.0    0.0                         VSPV(I)                           
    0                                         NSSV                              
    30.0E6 0.75E6 0.25 0.375E6 0.375E6 0.375E6                                  
     2.0                                E1,E2,ANU12,G12,G13,G23,THKNS           
    100.0  0.0   0.0                          F0, FX, FY                        

     Node    x-coord.      y-coord.     deflec. w    x-rotation    y-rotation
       1   0.00000E+00   0.00000E+00   0.24556E-02   0.00000E+00   0.00000E+00
       2   0.50000E+01   0.00000E+00   0.13258E-02  -0.93499E-03   0.00000E+00
       3   0.10000E+02   0.00000E+00   0.00000E+00   0.00000E+00   0.00000E+00
       4   0.00000E+00   0.37500E+01   0.22172E-02   0.00000E+00  -0.79161E-03
       5   0.50000E+01   0.37500E+01   0.12060E-02  -0.82624E-03  -0.18107E-03
        
             x-coord.     y-coord.     sigma-x      sigma-y     sigma-xy
           0.8943E+01   0.7925E+00  -0.3918E+04  -0.2247E+02   0.2886E+01
           0.1057E+01   0.6708E+01  -0.1055E+04   0.1729E+03  -0.1011E+03
           0.6057E+01   0.6708E+01  -0.2332E+01   0.3950E+02  -0.1784E+03
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Problem 13.73: Analyze the plate bending problem in Fig. P12.3 with the SDT
elements. Use the mesh shown in the figure, and take E = 107 psi, ν = 0.25, h = 0.25
in. and q0 = 10 lb/in

2.

Solution: The input data and partial output are included in Box 13.73 for 2×2 mesh
of quadratic SDT elements. We take a = b = 10 in.

Box 13.73: Input data and partial output for the plate problem of Fig. P12.3.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.
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     Node    x-coord.      y-coord.     deflec. w    x-rotation    y-rotation

       1   0.00000E+00   0.00000E+00   0.93767E-01   0.00000E+00   0.00000E+00
       2   0.12500E+01   0.00000E+00   0.86732E-01   0.10873E-01   0.00000E+00
       3   0.25000E+01   0.00000E+00   0.66813E-01   0.20349E-01   0.00000E+00
       4   0.37500E+01   0.00000E+00   0.36340E-01   0.27044E-01   0.00000E+00
       5   0.50000E+01   0.00000E+00   0.00000E+00   0.29577E-01   0.00000E+00
       6   0.00000E+00   0.12500E+01   0.94247E-01   0.00000E+00  -0.81810E-03
      10   0.50000E+01   0.12500E+01   0.00000E+00   0.30301E-01   0.00000E+00
      11   0.00000E+00   0.25000E+01   0.95918E-01   0.00000E+00  -0.18977E-02
      15   0.50000E+01   0.25000E+01   0.00000E+00   0.30226E-01   0.00000E+00
      16   0.00000E+00   0.37500E+01   0.99196E-01   0.00000E+00  -0.35244E-02
      20   0.50000E+01   0.37500E+01   0.00000E+00   0.31893E-01   0.00000E+00
      21   0.00000E+00   0.50000E+01   0.10514E+00   0.00000E+00  -0.61704E-02
      22   0.12500E+01   0.50000E+01   0.97256E-01   0.12163E-01  -0.56916E-02
      23   0.25000E+01   0.50000E+01   0.74931E-01   0.22775E-01  -0.44741E-02
      24   0.37500E+01   0.50000E+01   0.40758E-01   0.30276E-01  -0.24484E-02
      25   0.50000E+01   0.50000E+01   0.00000E+00   0.33118E-01   0.00000E+00

            x-coord.     y-coord.     sigma-x      sigma-y     sigma-xy
                                      sigma-xz     sigma-yz
          0.5283E+00   0.5283E+00   0.1165E+05   0.2126E+04   0.5444E+02
                                   -0.2085E+02  -0.6056E+01
          0.4472E+01   0.4472E+01   0.2475E+04   0.1225E+03   0.1252E+04
                                   -0.3055E+03  -0.1762E+01
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Problem 13.76: Analyze the annular plate in Fig. P12.5 using a four element mesh
of CPT(C) elements. Use E = 107 psi, ν = 0.25, a = 10 in., b = 5 in., h = 0.25 in.
and Q0 = 1 lb/in.

Solution: The input data and partial output are included in Box 13.76. There seems
to be a problem with the CPT element as applied to circular plates. It
does not even preserve the symmetry expected (e.g., w1 = w7, w2 = w8, etc.) and
the maximum deflection is only 60% of that predicted by the SDT element (see the
solution to Problem 13.77).

Box 13.76: Input data and partial output for the annular plate problem of Fig.
P12.5.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

0Q0Q

x

y

a

b
••

•
•

••1 2 3

4
5

6

•
•
•9

8
7

 Prob 13.76: Bending of a an annular plate under an edge load -- CPT(C)       
    5   1   0   0                                         
    1   4   0   0                                          
    4   9                                                             
    1   2  5  4                                                                 
    2   3  6  5                                                                 
    4   5  8  7                                                                 
    5   6  9  8                                                        
    5.0     0.0     7.5     0.0    10.0     0.0                                 
   3.5355  3.5355  5.3033  5.3033  7.07107 7.07107                             
    0.0     5.0     0.0     7.5     0.0    10.0                        
    9                                                                      
    1 3  2 3  3 1  3 3  6 1  7 2  8 2  9 1  9 2                      
    0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0                          
    3                                                                       
    1 1     4 1     7 1                                                    
    1.9635  3.927   1.9635                                                  
    1.0E7 1.0E7 0.25 0.4E7 0.4E7 0.4E7 0.25                          
    0.0   0.0   0.0                                                 

     Node    x-coord.      y-coord.     deflec. w    x-rotation    y-rotation 

       1   0.50000E+01   0.00000E+00   0.61415E-02  -0.15437E-02   0.00000E+00
       2   0.75000E+01   0.00000E+00   0.30838E-02  -0.15670E-02   0.00000E+00
       3   0.10000E+02   0.00000E+00   0.00000E+00  -0.15629E-02   0.00000E+00
       4   0.35355E+01   0.35355E+01   0.50665E-02  -0.12687E-02  -0.87643E-03
       5   0.53033E+01   0.53033E+01   0.25292E-02  -0.12284E-02  -0.32587E-03
       6   0.70711E+01   0.70711E+01   0.00000E+00  -0.12307E-02   0.86927E-04
       7   0.00000E+00   0.50000E+01   0.22195E-02   0.00000E+00  -0.10787E-02
       8   0.00000E+00   0.75000E+01   0.10317E-02   0.00000E+00  -0.61397E-03
       9   0.00000E+00   0.10000E+02   0.00000E+00   0.00000E+00   0.23336E-03
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Problem 13.77: Analyze the annular plate in Fig. P12.5 using a four element mesh
of four-node SDT elements. Use E = 107 psi, ν = 0.25, a = 10 in., b = 5 in., h = 0.25
in. and Q0 = 1 lb/in.

Solution: The input data and partial output are included in Box 13.77.

Box 13.77: Input data and partial output for the annular plate problem of Fig.
P12.5.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

    Prob 13.77: Bending of a an annular plate under an edge load (SDT)
    3   1   0   0                                ITYPE,IGRAD,ITEM,NEIGN
    1   4   0   0                                IELTYP,NPE,MESH,NPRNT
    4   9                                        NEM, NNM
    1   2  5  4
    2   3  6  5
    4   5  8  7
    5   6  9  8                                  NOD(I,J)
    5.0     0.0     7.5     0.0    10.0     0.0
    3.5355  3.5355  5.3033  5.3033  7.07107 7.07107
    0.0     5.0     0.0     7.5     0.0    10.0  GLXY(I,J)
    9                                            NSPV
    1 3  2 3  3 1  3 3  6 1  7 2  8 2  9 1  9 2  ISPV(I,J)
    0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  VSPV(I)
    3                                            NSSV
    1 1      4 1        7 1                      ISSV
    1.9635  3.927    1.9635                 VSSV
    1.0E7 1.0E7 0.25 0.4E7 0.4E7 0.4E7 0.25      E1,E2,...
    0.0   0.0   0.0                              F0, FX, FY

     Node    x-coord.      y-coord.     deflec. w    x-rotation    y-rotation
 
       1   0.50000E+01   0.00000E+00   0.10636E-01   0.26574E-02   0.00000E+00
       2   0.75000E+01   0.00000E+00   0.51550E-02   0.24775E-02   0.00000E+00
       3   0.10000E+02   0.00000E+00   0.00000E+00   0.23526E-02   0.00000E+00
       4   0.35355E+01   0.35355E+01   0.10636E-01   0.18791E-02   0.18791E-02
       5   0.53033E+01   0.53033E+01   0.51550E-02   0.17518E-02   0.17518E-02
       6   0.70711E+01   0.70711E+01   0.00000E+00   0.16635E-02   0.16635E-02
       7   0.00000E+00   0.50000E+01   0.10636E-01   0.00000E+00   0.26574E-02
       8   0.00000E+00   0.75000E+01   0.51550E-02   0.00000E+00   0.24775E-02
       9   0.00000E+00   0.10000E+02   0.00000E+00   0.00000E+00   0.23526E-02
  
           x-coord.     y-coord.     sigma-x      sigma-y     sigma-xy
                                     sigma-xz     sigma-yz
  
          0.5335E+01   0.2210E+01   0.1117E+03   0.4530E+03  -0.1707E+03
                                   -0.3641E+01  -0.1508E+01
          0.7469E+01   0.3094E+01   0.7314E+02   0.3036E+03  -0.1152E+03
                                   -0.2600E+01  -0.1077E+01
          0.2210E+01   0.5335E+01   0.4530E+03   0.1117E+03  -0.1707E+03
                                   -0.1508E+01  -0.3641E+01
          0.3094E+01   0.7469E+01   0.3036E+03   0.7314E+02  -0.1152E+03
                                   -0.1077E+01  -0.2600E+01
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Problem 13.78: Analyze the plate problem in Fig. P12.2 for its transient response.
Use a mesh of 2 × 4 CPT(N) elements and E = 107 psi, ν = 0.25, ρ = 1 lb/in3,
h = 0.25 in., q0 = 10 lb/in., ∆t = 0.05 and α = γ = 0.5.

Solution: The input data and partial output are included in Box 13.78. Plot of
w(5, 10, t) = w15(t) versus t is presented in the figure.

Box 13.78: Input data file for the transient analysis of the plate problem of Fig.
P12.2 (using the CPT(N) element).

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

 Problem 13.78: Bending of a cantilever plate--CPT(N)
    4   1   2   0                             ITYPE,IGRAD,ITEM,NEIGN
    1   4   1   0                             IEL, NPE, MESH, NPRNT
    2   4                                     NX, NY
    0.0  2.5  2.5                             X0, DX(I)
    0.0  2.5  2.5  2.5  2.5                   Y0, DY(I)
    9                                         NSPV
    1  1   1  2   1  3   2  1   2  2   2  3
    3  1   3  2   3  3                        ISPV(I,J)
    0.0    0.0    0.0    0.0    0.0    0.0
    0.0    0.0    0.0                         VSPV(I)
    3                                         NSSV
    13  1  14  1  15  1                       ISSV(I,J)
    12.5   25.0   12.5                        VSSV(I)
    1.0E7 1.0E7 0.25 0.4E7 0.4E7 0.4E7 0.25   E1,E2,ANU12,G12,...
    0.0   0.0   0.0                           F0, FX, FY
    1.0   0.0   0.0                           C0, CX, CY
    50  51  1     0                   NTIME,NSTP,INTVL,INTIAL
    0.05  0.5  0.5  1.0E-5            DT,ALFA,GAMA,EPSLN
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Problem 13.80: Determine the transient response of the annular plate in Fig. P12.5
using four SDT elements, ∆t = 0.05, ρ = 1.0 and α = γ = 0.5. Plot the deflection at
node 1 as a function of time for at least two periods.

Solution: The input data and partial output are included in Box 13.80. Plot of
w(5, 0, t) versus t is presented in the figure.

Box 13.80: Input data file for the transient analysis of annular plate problem of
Fig. P12.5.

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.

0.00 0.20 0.40 0.60 0.80 1.00

Time, t

0.00

0.01

0.01

0.02

0.02

0.03

D
ef

le
ct

io
n

, w

    Prob 13.80: Transient analysis of an annular plate (SDT)
    3   1   2   0                                ITYPE,IGRAD,ITEM,NEIGN
    1   4   0   0                                IELTYP,NPE,MESH,NPRNT
    4   9                                       NEM, NNM
        1   2  5  4
    2   3  6  5
    4   5  8  7
    5   6  9  8                                  NOD(I,J)
    5.0     0.0     7.5     0.0    10.0     0.0
    3.5355  3.5355  5.3033  5.3033  7.07107 7.07107
    0.0     5.0     0.0     7.5     0.0    10.0  GLXY(I,J)
    9                                            NSPV
    1 3  2 3  3 1  3 3  6 1  7 2  8 2  9 1  9 2  ISPV(I,J)
    0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  VSPV(I)
    3                                            NSSV
    1 1      4 1        7 1                      ISSV
    1.9635  3.927    1.9635                      VSSV
    1.0E7 1.0E7 0.25 0.4E7 0.4E7 0.4E7 0.25      E1,E2,...
    0.0   0.0   0.0                              F0, FX, FY
    1.0   0.0   0.0                              C0,  CX,  CY
    50  51  1     0                   NTIME,NSTP,INTVL,INTIAL
    0.05  0.5  0.5  1.0E-5            DT,ALFA,GAMA,EPSLN
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Chapter 14

PRELUDE TO

ADVANCED TOPICS

Problem 14.1: Consider the second-order equation

− d
dx

µ
a
du

dx

¶
= f (1)

and rewrite it as a pair of first-order equations

−du
dx
+
P

a
= 0, −dP

dx
− f = 0 (2)

Construct the weighted-residual finite element model of the equations, and specialize
it to the Galerkin model. Assume interpolation in the form

u =
mX
j=1

ujψi(x), P =
nX
j=1

Pjφj(x) (3)

and use the equations in (2) in a sequence that yields symmetric element equations:∙
[K11] [K12]
[K12]T [K22]

¸½ {u}
{P}

¾
=

½ {F 1}
{F 2}

¾
(iv)

The model can also be called a mixed model because (u,P ) are of different kinds.

Solution: The element coefficients are

K11
ij = 0, K

21
ij = K

12
ji , K

12
ij =

Z xb

xa

dψi
dx

dψj
dx

dx

K22
ij =

1

EI

Z xb

xa
ψiψj dx, F

2
i = P1ψi(xa) + P2ψi(xb)

F 1i =

Z xb

xa
fψi dx+Q1ψi(xa) +Q2ψi(xb)

Q1 = −
dM

dx

¯̄̄̄
x=xa

, Q2 =
dM

dx

¯̄̄̄
x=xb

, P1 = −
dw

dx

¯̄̄̄
x=xa

, P2 =
dw

dx

¯̄̄̄
x=xb

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.



400 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

Problem 14.2: Evaluate the coefficient matrices [Kαβ] in Problem 14.1 for a =
constant and column vectors {Fα} for f = constant. Assume that ψi = φi are the
linear interpolation functions. Eliminate {P} from the two sets of equations (iv) to
obtain an equation of the form

[K]{u} = {F}

Compare the coefficient matrix [K] and vector {F} with those obtained with the
weak form finite element model of (a). What conclusions can you draw?

Solution: The finite-element equations associated with Eq. (b) of Problem 14.1 are
given by

1

2

∙
1 −1
−1 1

¸½
P e1
P e2

¾
=
fehe
2

½
1
1

¾
+

½
Qe1
Qe2

¾

1

2

∙−1 1
−1 1

¸½
ue1
ue2

¾
=
he
6ae

∙
2 1
1 2

¸½
P e1
P e2

¾

Problem 14.3: Develop the least-squares finite element model of (2) in Problem
14.1, and compute element coefficient matrices and vectors when ψi = φi are the
linear interpolation functions.

Solution: The least-squares functional of the two equations in (2) is

I =

Z xb

xa

"µ
−du
dx
+
P

a

¶2
+

µ
dP

dx
+ f

¶2#
dx

Setting δuI = 0 and δP I = 0, we obtain the integral statements

δuI = 2

Z xb

xa

∙
−dδu
dx

µ
−du
dx
+
P

a

¶¸
dx = 0 (1)

δP I = 2

Z xb

xa

∙
δP

a

µ
−du
dx
+
P

a

¶
+
dδP

dx

µ
dP

dx
+ f

¶¸
dx = 0 (2)

Substituting the approximations

u =
mX
j=1

ujψi(x), P =
nX
j=1

Pjφj(x) (3)

into Eqs. (1) and (2), we obtain the finite element model∙
[K11] [K12]
[K12]T [K22]

¸½ {u}
{P}

¾
=

½ {F 1}
{F 2}

¾
(4)

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.
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where the element coefficients are

K11
ij =

Z xb

xa

dψi
dx

dψj
dx

dx

K12
ij = −

Z xb

xa

1

a

dψi
dx

φj dx = K
21
ji

K22
ij =

Z xb

xa

∙
1

a2
φiφj +

dφi
dx

dφj
dx

¸
dx

F 1i = 0, F
2
i = −

Z xb

xa

dφi
dx
f(x) dx (5)

For the choice of linear interpolation functions for ψi and φi and elementwise
constant value of a, the element coefficients in (5) are

K11 =
1

he

∙
1 −1
−1 1

¸
, K12 =

1

2ae

∙
1 1
−1 −1

¸
K22 =

he
6a2e

∙
2 1
1 2

¸
+
1

he

∙
1 −1
−1 1

¸ (6)

Problem 14.4: Solve the problem in Example 3.2.1 using two elements of the least-
squares model developed in Problem 14.3. Compare the results with the exact solution
and those of the weak form finite element model.

Solution: The governing equation of Example 3.2.1 is slightly more general than Eq.
(1) of Problem 14.1. Hence, we consider the more general equation

− d
dx

µ
a
du

dx

¶
+ cu = f (1)

and rewrite it as a pair of first-order equations

−du
dx
+
P

a
= 0, −dP

dx
+ cu− f = 0 (2)

The least-squares functional becomes

I =

Z xb

xa

"µ
−du
dx
+
P

a

¶2
+

µ
−dP
dx

+ cu− f
¶2#

dx

Setting δuI = 0 and δP I = 0, we obtain the integral statements

δuI = 2

Z xb

xa

∙
−dδu
dx

µ
−du
dx
+
P

a

¶
+ cδu

µ
−dP
dx

+ cu− f
¶¸
dx = 0 (3)

δP I = 2

Z xb

xa

∙
δP

a

µ
−du
dx
+
P

a

¶
− dδP
dx

µ
−dP
dx

+ cu− f
¶¸
dx = 0 (4)

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.
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For this more general case, the finite element model (4) of Problem 14.3 is still
valid with

K11
ij =

Z xb

xa

µ
dψi
dx

dψj
dx

+ c2ψiψj

¶
dx

K12
ij = −

Z xb

xa

µ
1

a

dψi
dx

φj + cψi
dφj
dx

¶
dx = K21

ji

K22
ij =

Z xb

xa

∙
1

a2
φiφj +

dφi
dx

dφj
dx

¸
dx

F 1i =

Z xb

xa
cψif(x) dx, F

2
i = −

Z xb

xa

dφi
dx
f(x) dx (5)

For the choice of linear interpolation functions for ψi and φi and elementwise
constant values of a, c and f , the element coefficients in (5) are

K11 =
1

he

∙
1 −1
−1 1

¸
+
c2ehe
6

∙
2 1
1 2

¸
K12 =

1

2ae

∙
1 1
−1 −1

¸
+
ce
2

∙
1 −1
1 −1

¸
K22 =

he
6a2e

∙
2 1
1 2

¸
+
1

he

∙
1 −1
−1 1

¸ (6)

For the problem in Example 3.2.1, we have a = 1, c = −1 and f(x) = −x2. Hence,
the source vector is given by

F 1i = −
Z xb

xa
ψi(−x2) dx → F1 =

1

he

½ xb
3 (x

3
b − x3a)− 1

4(x
4
b − x4a)

−xa3 (x3b − x3a) +
1
4(x

4
b − x4a)

¾
F 2i = −

Z xb

xa

dφi
dx
(−x2) dx → F2 = −x

3
b − x3a
3he

½
1
−1

¾
The element equations become⎡⎢⎢⎢⎣

1
he
+ he

3 0 − 1
he
+ he

6 1

0 1
he
+ he

3 −1 − 1
he
+ he

6

− 1
he
+ he

6 −1 1
he
+ he

3 0

1 − 1
he
+ he

6 0 1
he
+ he

3

⎤⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
u1
P1
u2
P2

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
F 11
F 21
F 12
F 22

⎫⎪⎪⎬⎪⎪⎭
Using h1 = h2 = 0.5, the element equations become

1

12

⎡⎢⎢⎣
26 0 −23 12
0 26 −12 −23

−23 −12 26 0
12 −23 0 26

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
u1
P1
u2
P2

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
F 11
F 21
F 12
F 22

⎫⎪⎪⎬⎪⎪⎭
PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.
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The assembled equations of the two-element mesh is

1

12

⎡⎢⎢⎢⎢⎢⎢⎣

26 0 −23 12 0 0
0 26 −12 −23 0 0

−23 −12 52 0 −23 12
12 −23 0 52 −12 −23
0 0 −23 −12 26 0
0 0 12 −23 0 26

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U1
U2
U3
U4
U5
U6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=
1

96

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
−8
14
−48
17
56

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
Using the boundary conditions U1 = U5 = 0, we obtain the condensed equations

1

12

⎡⎢⎢⎣
26 −12 −23 0
−12 52 0 12
−23 0 52 −23
0 12 −23 26

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
U2
U3
U4
U6

⎫⎪⎪⎬⎪⎪⎭ =
1

12

⎧⎪⎪⎨⎪⎪⎩
−1.00
1.75
−6.00
7.00

⎫⎪⎪⎬⎪⎪⎭
whose solution is

U2 = −0.11453, U3 = −0.04746, U4 = −0.06122, U6 = 0.23698

The two-element weak form solution for U3 is U3 = −0.03977. The exact value is
u(0.5) = 0.04076.

Problem 14.5: Show that the mixed finite element model of the Euler—Bernoulli
beam theory, (14.2.47a), is the same as that in Eq. (5.2.18) for the choice of linear
interpolation of w and M .

Solution: For linear interpolation of w and M and element-wise constant values of
EI, the element matrices in (14.2.47a) become

[Ke] =
1

he

∙
1 −1
−1 1

¸
, [Ge] =

he
6EeIe

∙
2 1
1 2

¸
, {fe} =

½
fe1
fe2

¾
[Ge]−1 =

2EeIe
he

∙
2 −1
−1 2

¸
, [Ge]−1[Ke]T =

6EeIe
h2e

∙
1 −1
−1 1

¸
[Ke][Ge]−1[Ke]T =

12EeIe
h3e

∙
1 −1
−1 1

¸
, [Ge]−1[Ke]T =

³
[Ke][Ge]−1

´T
Hence, we have from Eq. (14.2.47a) the result

2EeIe
h3e

⎡⎢⎢⎣
6 −3he −6 −3he
−3he 2h2e 3he h2e
−6 3he 6 3he
−3he h2e 3he 2h2e

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
we1
Θe1
we2
Θe2

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
qe1
0
qe2
0

⎫⎪⎪⎬⎪⎪⎭+
⎧⎪⎪⎨⎪⎪⎩
Qe1
Qe2
Qe3
Qe4

⎫⎪⎪⎬⎪⎪⎭
Interestingly, the stiffness matrix of the mixed finite element model with linear
interpolation of both w and M is the same as that of the displacement finite element
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model derived in Chapter 5 using the C1 (Hermite cubic) interpolation. However, the
load vector differs in the sense that the mixed model does not contain contributions
of distributed load q(x) to the nodal moment components.

Problem 14.6: Consider the pair of equations

∇u− q/k = 0, ∇ · q+ f = 0 in Ω

where u and q are the dependent variables, and k and f are given functions of position
(x, y) in a two-dimensional domain Ω. Derive the finite element formulation of the
equations in the form⎡⎣ [K11] [K12] [K13]

[K22] [K23]
symmetric [K33]

⎤⎦⎧⎨⎩
{u}
{q1}
{q2}

⎫⎬⎭ =
⎧⎨⎩
{F 1}
{F 2}
{F 3}

⎫⎬⎭
Caution: Do not eliminate the variable u from the given equations.

Solution: The weak form is

0 =

Z
Ωe
(gradw · q− wf) dxdy −

Z
Γe
wqn ds = 0

0 =

Z
Ωe
v ·
µ
gradu− 1

k
q

¶
dxdy = 0

where v = (v1, v2) and w are test functions (or, variations in q and u, respectively),
and qn = n̂ · q.
For the case when u, q1, q2 are interpolated by same ψi, we have

K11
ij = 0, K

12
ij =

Z
Ωe

∂ψi
∂x

ψj dxdy, K
13
ij =

Z
Ωe

∂ψi
∂y

ψj dxdy

K21
ij = K

12
ji , K

22
ij = −

Z
Ωe

1

k
ψiψj dxdy, K

23
ij = 0

K31
ij = K

13
ji , K

32
ij = 0, K

33
ij = K

22
ij

F 1i =

Z
Γe
ψiqn ds, F

2
i = 0, F

e
i = 0

Problem 14.7: Compute the element coefficient matrices [Kαβ] and vectors {Fα}
of Problem 14.6 using linear triangular elements for all variables. Assume that k is a
constant.

Solution: The matrices Kαβ can be expressed in terms of Sαβ introduced in Eq.
(8.2.39). We have

K12 = S10, K13 = S20, K22 = −1
k
S00
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where Sαβij are given in Eq. (8.2.44) for a linear triangular element.

Problem 14.8: Repeat Problem 14.7 with linear rectangular elements.

Solution: The matrices Kαβ can be expressed in terms of Sαβ introduced in Eq.
(8.2.39). We have

K12 = S10, K13 = S20, K22 = −1
k
S00

where Sαβij are given in Eq. (8.2.52) for a linear rectangular element, except that

S10 = (S01)T and S20 = (S02)T are given in the solution to Problem 8.10.

Problem 14.9: Consider the following form of the governing equations of the
classical plate theory:

−(∂
2Mxx

∂x2
− 4D66

∂4w

∂x2∂y2
+

∂2Myy

∂y2
) = q (a)

∂2w

∂x2
= −

¡
D̄22Mxx + D̄12Myy

¢
,

∂2w

∂y2
= −

¡
D̄12Mxx + D̄11Myy

¢
(b)

whereMxx andMyy are the bending moments, w is the transverse deflection, q is the
distributed load, ν is the Poisson ratio, and

D̄ij =
Dij
D0
, D0 = D11D22 −D212

(a) Gove the weak form of the equations, and (b) assume approximation of the form

w =
4X
i=1

wiψ
1
i , Mxx =

2X
i=1

Mxiψ
2
i , Myy =

2X
i=1

Myiψ
3
j

to develop the (mixed) finite element model in the form

⎡⎣ [K11] [K12] [K13]
[K22] [K23]

symm. [K33]

⎤⎦⎧⎨⎩
{w}
{Mxx}
{Myy}

⎫⎬⎭ =
⎧⎨⎩
{F 1}
{F 2}
{F 3}

⎫⎬⎭
Comment on the choice of the functions ψα

i for α = 1, 2, 3.
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Solution: The weak forms of Eqs. (a) and (b) over a typical element Ωe are

0 =

Z
Ωe

Ã
∂δw

∂x

∂Mxx

∂x
+

∂δw

∂y

∂Myy

∂y
+ 4D66

∂2δw

∂x∂y

∂2w

∂x∂y
− qδw

!
dxdy

−
I
Γe

"
δwQ̄n − 2D66

∂2w

∂x∂y
(δθxny + δθynx)

#
ds (c)

0 =

Z
Ωe

∙
∂w

∂x

∂δMxx

∂x
− δMxx

¡
D̄22Mxx − D̄12Myy

¢¸
dxdy

−
I
Γe
δMxxθxnx ds (d)

0 =

Z
Ωe

∙
∂w

∂y

∂δMyy

∂y
− δMyy

¡
D̄11Myy − D̄12Mxx

¢¸
dxdy

−
I
Γe
δMyyθyny ds (e)

The primary and secondary variables of the formulation are

w, Mxx, Myy, (f)

Vn, θxnx ≡
∂w

∂x
nx, θyny ≡

∂w

∂y
ny, (g)

where Vn is the effective shear force (Kirchhoff free edge condition)

Vn = Qn +
∂Mns

∂s
, Qn = Qxnx +Qyny (h)

The finite element model of Eq. (d) and (e) is obtained by substituting the
approximations of the form

w =
rX
i=1

wiψ
(1)
i , Mxx =

sX
i=1

Mxiψ
(2)
i , Myy =

pX
i=1

Myiψ
(3)
i (i)

where ψ
(α)
i , (α = 1, 2, 3, 4) are appropriate interpolation functions. We obtain⎡⎣ [K11] [K12] [K13]

[K22] [K23]
symm. [K33]

⎤⎦⎧⎨⎩
{w}
{Mx}
{My}

⎫⎬⎭ =
⎧⎨⎩
{F 1}
{F 2}
{F 3}

⎫⎬⎭ (j)

where

K11
ij = 4D66

Z
Ωe

∂2ψ1i
∂x∂y

∂2ψ1i
∂x∂y

dxdy, i, j = 1, 2, . . . , r,
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K12
ij =

Z
Ωe

∂ψ1i
∂x

∂ψ2j
∂x

dxdy, i, j = 1, 2, . . . , r; j = 1, 2, . . . , s,

K13
ij =

Z
Ωe

∂ψ1i
∂y

∂ψ3j
∂y

dxdy, i, j = 1, 2, . . . , r; j = 1, 2, . . . , p,

K22
ij =

Z
Ωe
(−D̄22)ψ2i ψ2j dxdy, i, j = 1, 2, . . . , s,

K23
ij =

Z
Ωe
(−D̄12)ψ2i ψ3j dxdy, i = 1, 2, . . . , s; j = 1, 2, . . . , p,

K33
ij =

Z
Ωe
(−D̄11)ψ3i ψ3j dxdy, i, j = 1, 2, . . . , p,

F 1i =

Z
Ωe
qψ1i dxdy +

I
Γe
Vnψ

1
i ds, i = 1, 2, . . . , r,

F 2i =

I
Γe
θxnxψ

2
i ds, i = 1, 2, . . . , s,

F 3i =

I
Γe
θynyψ

3
i ds, i = 1, 2, . . . , p, (k)

An examination of the weak forms (d) and (e) show that the minimum continuity
conditions of the interpolation functions ψα

i (α = 1, 2, 3) are

ψ1i = linear in x and linear in y

ψ2i = linear in x and constant in y

ψ3i = linear in y and constant in x

ψ4i = linear in x and linear in y

(i)

Problem 14.10: Use the interpolation

w =
4X
i=1

wiψ
1
i , Mxx =

2X
i=1

Mxiψ
2
i , Myy =

2X
i=1

Myiψ
3
j

with

ψ11 =

µ
1− x

a

¶µ
1− y

b

¶
, ψ12 =

x

a

µ
1− y

b

¶
, ψ13 =

x

a

y

b
, ψ14 =

µ
1− x

a

¶
y

b

ψ21 = 1−
x

a
, φ22 =

x

a
, ψ31 = 1−

y

b
, ψ32 =

y

b

for a rectangular element with sides a and b to evaluate the matrices [Kαβ](α,β =
1, 2, 3) in Problem 14.9.
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w0 , Mx , My
at each node

1 2

34

(a) Mixed model A

w0 , Mx , My
at each node

1 2

34

 (b) Mixed model B

1 2

34

5

6

7

8
w0 at four

corner nodes

1 2

34

 (c) Mixed model C

Mx1 Mx2

My2

My1
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Solution: We can select either

ψ21 = 1−
x

a
, ψ22 =

x

a
, ψ31 = 1−

y

b
, ψ32 =

y

b
(a)

and ψ1i to be the bilinear interpolation functions, or

ψ1i = ψ2i = ψ3i = ψ4i = bilinear functions of a rectangular element (b)

The corresponding rectangular elements are shown in Figure P14.10.

Figure P14.10: Mixed rectangular plate bending elements based on CPT. (a) Model
A. (b) Model B. (c) Model C.

The numerical form of element matrices is

[K11] =
4D66
ab

⎡⎢⎢⎣
1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

⎤⎥⎥⎦ , [K12] =
b

2a

⎡⎢⎢⎣
1 −1
−1 1
−1 1
1 −1

⎤⎥⎥⎦ = [K21]T

[K13] = [K31]T =
a

2b

⎡⎢⎢⎣
1 −1
1 −1
−1 1
−1 1

⎤⎥⎥⎦ , [K22] = −D22ab
6

∙
2 1
1 2

¸

[K23] = [K32]T =
D12ab

4

∙
1 1
1 1

¸
, [K33] =

D11
D22

[K22]

Problem 14.11: Repeat Problem 14.10 for the case in which φ1i = φ2i = ψi.

Solution: [K11] is the same as in Problem 14.10. Also, we have

[K12] = [K21]T = [S11], [K13] = [K31]T = [S22]

[K22] = −D22[S00], [K23] = [K32]T = D12[S
00], [K33] = −D11[S00]
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where [S11], [S22] and [S00] are defined in Eq. (8.2.52).

Problem 14.12: Evaluate the element matrices in (14.4.6b) by assuming that the
nonlinear parts in the element coefficients are element-wise-constant.

Solution: We have

[K11] =
EA

L

∙
1 −1
−1 1

¸
, [K12] =

1

2
[K21] =

EA

L

∙
1 0 −1 0
−1 0 1 0

¸

[K22] =
2EI

L3

⎡⎢⎢⎣
6 −3L −6 −3L
−3L 2L2 3L L2

−6 3L 6 3L
−3L L2 3L 2L2

⎤⎥⎥⎦+ N

30L

⎡⎢⎢⎣
36 −3L −36 −3L
−3h 4L2 3L −L2
−36 3L 36 3L
−3L −L2 3L 4L2

⎤⎥⎥⎦
where L is the length of the element and N = 0.5(dw/dx.

Problem 14.13: Give the finite element formulation of the following nonlinear
equation over an element (xa, xb) :

− d
dx

µ
u
du

dx

¶
+ 1 = 0 for 0 < x < 1

µ
du

dx

¶ ¯̄̄̄
x=0
= 0, u(1) =

√
2

Solution: The weak form is same as in the linear equation except that we have
a(x) = u(x): [K(ū)]{u} = {F} with [see Reddy (2004b)]

Ke
ij =

Z xb

xa

Ã
nX
k=1

uekψ
e
k

!
dψei
dx

dψej
dx

dx

=
nX
k=1

uek

Z xb

xa
ψek
dψei
dx

dψej
dx

dx (a)

Fi = −
Z xb

xa
ψei dx+Qi

For example, for linear approximation (n = 2) of u(x), we have

Ke
ij =

nX
k=1

uek

Z xb

xa
ψek
dψei
dx

dψej
dx

dx

=
nX
k=1

ae0u
e
k(−1)i+j

1

h2e

Z xb

xa
ψek dx

= (−1)i+j a
e
0

2he

Ã
nX
k=1

uek

!
= (−1)i+j a

e
0

2he
(ue1 + u

e
2) (b)
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or

[Ke] =
ae0(u

e
1 + u

e
2)

2he

∙
1 −1
−1 1

¸
(c)

Further, the assembled equations associated with a mesh of two linear elements of
equal length are (U1, U2, U3 are the global nodal values)

1

2h

⎡⎣ (U1 + U2) −(U1 + U2) 0
−(U1 + U2) (U1 + 2U2 + U3) −(U2 + U3)

0 −(U2 + U3) (U2 + U3)

⎤⎦⎧⎨⎩
U1
U2
U3

⎫⎬⎭
=

⎧⎪⎨⎪⎩
f
(1)
1

f
(1)
2 + f

(2)
1

f
(2)
2

⎫⎪⎬⎪⎭+
⎧⎪⎨⎪⎩

Q
(1)
1

Q
(1)
2 +Q

(2)
1

Q
(2)
2

⎫⎪⎬⎪⎭ (d)

Problem 14.14: Compute the tangent coefficient matrix for the nonlinear problems
in Problem 14.13. What restriction(s) should be placed on the initial guess vector?

Solution: By definition (14.4.17), we have [see Reddy (2004b)]

(Ke
T )ij ≡

∂Rei
∂uej

=
∂

∂uej

Ã
nX

m=1

Ke
imu

e
m − F ei

!

=
nX

m=1

Ã
∂Ke

im

∂uej
uem +K

e
im

∂uem
∂uej

!
=

nX
m=1

∂Ke
im

∂uej
uem +K

e
ij (a)

For the problem at hand, we have

(KT )ij =
nX

m=1

∂Ke
im

∂uej
uem +K

e
ij

=
nX

m=1

∂

∂uej

µZ xb

xa
uh
dψei
dx

dψem
dx

dx

¶
uem +K

e
ij

=

Z xb

xa

∂uh
∂uej

dψei
dx

Ã
nX

m=1

uem
dψem
dx

!
dx+Ke

ij

=

Z xb

xa

duh
dx

dψei
dx

ψej dx+K
e
ij ≡ K̂e

ij +K
e
ij (i)

where the identity
nX

m=1

uem
dLem
dx

=
duh
dx

is used in arriving at the last line. We have,

K̂e
ij =

Z xb

xa

duh
dx

dψei
dx

ψej dx =
ue2 − ue1
2

Z xb

xa

dψei
dx

ψej dx
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or

K̂e =
ue2 − ue1
2he

∙−1 −1
1 1

¸
Thus, the tangent matrix becomes

Ke
T = K

e + K̂e =
(ūe1 + ū

e
2)

2he

∙
1 −1
−1 1

¸
+
(ūe2 − ūe1)
2he

∙−1 −1
1 1

¸
where ūei denote the nodal values known from the previous iteration. Note that the
tangent coefficient matrix is not symmetric. Also, the initial guess should not be
that all Ui = 0. Since the boundary condition at x = 1 is nonzero, the initial guess
should be one that satisfies the boundary condition. If the boundary condition is
homogeneous, then at least one of the nodal values should be nonzero so that the
tangent coefficient matrix is non-zero.

Problem 14.15: Compute the tangent stiffness matrixKT in (14.4.17) for the Euler—
Bernoulli beam element in (14.4.6a).

Solution: The coefficients of the element tangent stiffness matrix Ke
T ≡ Te can be

computed using the definition in (14.4.17). In terms of the components defined in
Eq. (14.4.6a), we can write [see Reddy (2004b)]

Tαβ
ij =

⎛⎝∂Rα
i

∂∆β
j

⎞⎠(r−1) (a)

for α,β = 1, 2. The components of the residual vector can be expressed as

Rα
i =

2X
γ=1

X
p=1

Kαγ
ip ∆

γ
p − Fα

i

=
2X
p=1

Kα1
ip ∆

1
p +

4X
P=1

Kα2
iP∆

2
P − Fα

i

=
2X
p=1

Kα1
ip up +

4X
P=1

Kα2
iP ∆̄P − Fα

i (b)

Note that the range of p is dictated by the size of the matrix [Kαβ]. We have

Tαβ
ij =

⎛⎝∂Rα
i

∂∆β
j

⎞⎠ = ∂

∂∆β
j

⎛⎝ 2X
γ=1

X
p=1

Kαγ
ip ∆

γ
p − Fα

i

⎞⎠
=

2X
γ=1

X
p=1

⎛⎝Kαγ
ip

∂∆γ
p

∂∆β
j

+
∂Kαγ

ip

∂∆β
j

∆γ
p

⎞⎠
= Kαβ

ij +
2X
p=1

∂

∂∆β
j

³
Kα1
ip

´
up +

4X
P=1

∂

∂∆β
j

³
Kα2
iP

´
∆̄P (c)
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Then the tangent stiffness matrix coefficients Tαβ
ij can be computed as follows:

T 11ij = K
11
ij +

2X
p=1

∂K11
ip

∂uj
up +

4X
P=1

∂K12
iP

∂uj
∆̄P

= K11
ij +

2X
p=1

0 · up +
4X

P=1

0 · ∆̄P (d)

Since
∂Kαβ

ij

∂uk
= 0 for all α,β, i, j and k (e)

the coefficients [T 11] and [T 21] of the tangent stiffness matrix are the same as those
of the direct stiffness matrix:

[T 11] = [K11] , [T 21] = [K21] (f)

Next consider

T 12iJ = K
12
iJ +

2X
p=1

Ã
∂K11

ip

∂∆̄J

!
up +

4X
P=1

Ã
∂K12

iP

∂∆̄J

!
∆̄P

= K12
iJ + 0 +

4X
P=1

"Z xb

xa

1

2
Axx

∂

∂∆̄J

µ
dw

dx

¶
dψi
dx

dφP
dx

dx

#
∆̄P

= K12
iJ +

4X
P=1

"Z xb

xa

1

2
Axx

∂

∂∆̄J

Ã
4X
K

∆̄K
dφK
dx

!
dψi
dx

dφP
dx

dx

#
∆̄P

= K12
iJ +

4X
P=1

"Z xb

xa

1

2
Axx

dφJ
dx

dψi
dx

dφP
dx

dx

#
∆̄P

= K12
iJ +

Z xb

xa

1

2
Axx

dψi
dx

dφJ
dx

Ã
4X

P=1

dφP
dx
∆̄P

!
dx

= K12
iJ +

Z xb

xa

µ
1

2
Axx

dw

dx

¶
dψi
dx

dφJ
dx

dx

= K12
iJ +K

12
iJ = 2K

12
iJ = K

21
Ji (g)

T 22IJ = K
22
IJ +

2X
p=1

Ã
∂K21

Ip

∂∆̄J

!
up +

4X
P=1

Ã
∂K22

IP

∂∆̄J

!
∆̄P

= K22
IJ +

2X
p=1

"Z xb

xa
Axx

∂

∂∆̄J

Ã
4X
K

∆̄K
dφK
dx

!
dφI
dx

dψp
dx

dx

#
up
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+
4X

P=1

"Z xb

xa

1

2
Axx

∂

∂∆̄J

µ
dw

dx

¶2 dφI
dx

dφP
dx

dx

#
∆̄P

= K22
IJ +

Z xb

xa
Axx

dφI
dx

dφJ
dx

⎛⎝ 2X
p=1

dψp
dx
up

⎞⎠ dx

+

Z xb

xa
Axx

µ
dw

dx

¶
dφI
dx

dφJ
dx

Ã
4X

P=1

∆̄P
dφP
dx

!
dx

= K22
IJ +

Z xb

xa
Axx

µ
du0
dx

+
dw

dx

dw

dx

¶
dφI
dx

dφJ
dx

dx (h)

Problem 14.16: Develop the nonlinear finite element model of the Timoshenko
beam theory. Equations (14.56) are valid for this case, with the following changes.
In place of (d2/dx2)(b d2w/dx2) use −(d/dx)(b dΨ/dx) +GAk(dw/dx+Ψ) and add
the following additional equation for w:

− d
dx

∙
GAk

µ
dw

dx
+Ψ

¶¸
= q

See Section 4.4 for additional details.

Solution: The equations of equilibrium of the Timoshenko beam theory for the
nonlinear case are

− d
dx

(
Axx

"
du

dx
+
1

2

µ
dw

dx

¶2#)
= f (a)

− d
dx

∙
Sxx

µ
dw

dx
+Ψ

¶¸
− d
dx

(
Axx

dw

dx

"
du

dx
+
1

2

µ
dw

dx

¶2#)
= q (b)

− d
dx

µ
Dxx

dΨ

dx

¶
+ Sxx

µ
dw

dx
+Ψ

¶
= 0 (c)

where Axx = EA, Sxx = KsGA and Dxx = EI.

The weaks forms of the three equations are

0 =

Z xb

xa

(
Axx

dδu

dx

"
du

dx
+
1

2

µ
dw

dx

¶2#
+ fδu0

)
dx

−Qe1δu(xa)−Qe4δu(xb) (d)

0 =

Z xb

xa

dδw

dx

(
Sexx

µ
dw

dx
+Ψ

¶
+Aexx

dw

dx

"
du

dx
+
1

2

µ
dw

dx

¶2#
δwq

)
dx
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−Qe2δw(xa)−Qe5δw(xb) (e)

0 =

Z xb

xa

∙
Dexx

dδΨ

dx

dΨ

dx
+ Sexx δΨ

µ
dw

dx
+Ψ

¶¸
dx

−Qe3 δΨ(xa)−Qe6 δΨ(xb) (f)

where δu, δw, and δΨ are the virtual displacements. The Qei have the same physical
meaning as in the Euler—Bernoulli beam element, and their relationship to the
horizontal displacement u, transverse deflection w0, and rotation Ψ, is

Qe1 = −Nxx(xa), Qe4 = Nxx(xb)

Qe2 = −
∙
Qx +Nxx

dw

dx

¸
x=xa

, Qe5 =

∙
Qx +Nxx

dw

dx

¸
x=xb

Qe3 = −Mxx(xa), Qe6 =Mxx(xb) (g)

Suppose that the displacements are approximated as

u(x) =
mX
j=1

uejψ
(1)
j , w(x) =

nX
j=1

wejψ
(2)
j , Ψ(x) =

pX
j=1

sejψ
(3)
j (h)

where ψ
(α)
j (x) (α = 1, 2, 3) are Lagrange interpolation functions of degree (m − 1),

(n − 1), and (p − 1), respectively. At the moment, the values of m, n, and p are
arbitrary, that is, arbitrary degree of polynomial approximations of u0, w0, and Ψ

may be used. Substitution of (h) for u, w, and Ψ, and δu = ψ
(1)
i , δw = ψ

(2)
i , and

δΨ = ψ
(3)
i into Eqs. (d)—(f) yields the finite element model

0 =
mX
j=1

K11
ij u

e
j +

nX
j=1

K12
ij w

e
j +

pX
j=1

K13
ij s

e
j − F 1i (i)

0 =
mX
j=1

K21
ij u

e
j +

nX
j=1

K22
ij w

e
j +

pX
j=1

K23
ij s

e
j − F 2i (j)

0 =
mX
j=1

K31
ij u

e
j +

nX
j=1

K32
ij w

e
j +

pX
j=1

K33
ij s

e
j − F 3i (k)

where

K11
ij =

Z xb

xa
Axx

dψ
(1)
i

dx

dψ
(1)
j

dx
dx, K12

ij =
1

2

Z xb

xa
Axx

dw0
dx

dψ
(1)
i

dx

dψ
(2)
j

dx
dx

K21
ij =

Z xb

xa
Axx

dw0
dx

dψ
(2)
i

dx

dψ
(1)
j

dx
dx, K13

ij = 0, K31
ij = 0
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K22
ij =

Z xb

xa
Sxx

dψ
(2)
i

dx

dψ
(2)
j

dx
dx+

1

2

Z xb

xa
Axx

µ
dw0
dx

¶2 dψ(2)i
dx

dψ
(2)
j

dx
dx

K23
ij =

Z xb

xa
Sxx

dψ
(2)
i

dx
ψ
(3)
j dx = K32

ji

K33
ij =

Z xb

xa

⎛⎝Dxxdψ(3)i
dx

dψ
(3)
j

dx
+ Sxxψ

(3)
i ψ

(3)
j

⎞⎠ dx

F 1i =

Z xb

xa
ψ
(1)
i f dx+Q

e
1ψ

(1)
i (xa) +Q

e
4ψ

(1)
i (xb)

F 2i =

Z xb

xa
ψ
(2)
i q dx+Q

e
2ψ

(2)
i (xa) +Q

e
5ψ

(2)
i (xb)

F 3i = Q
e
3ψ

(3)
i (xa) +Q

e
6ψ

(3)
i (xb) (`)

The element equations (i)—(k) can be expressed in matrix form as⎡⎣ [K11] [K12] [K13]
[K21] [K22] [K23]
[K31] [K32] [K33]

⎤⎦⎧⎨⎩
{u}
{w}
{s}

⎫⎬⎭ =
⎧⎨⎩
{F 1}
{F 2}
{F 3}

⎫⎬⎭ (m)

The choice of the approximation functions ψ
(α)
i dictates different finite element

models. The choice of linear polynomials ψ
(1)
i = ψ

(2)
i is known to yield a stiffness

matrix that is nearly singular. This will be discussed further in the next section.

When ψ
(1)
i are quadratic and ψ

(2)
i are linear, the stiffness matrix is 5 × 5. It is

possible to eliminate the interior degree of freedom for w0 and obtain 4× 4 stiffness
matrix. This element behaves well. When ψ

(1)
i are cubic and ψ

(2)
i are quadratic, the

stiffness matrix is 7× 7. If the interior nodal degrees of freedom are eliminated, one
obtains 4× 4 stiffness matrix that is known to yield the exact solution at the nodes
in the linear case when the shear stiffness and bending stiffnesses are element-wise
constant. More details of various Timoshenko beam elements can be found in Reddy
(2004b)

Problem 14.17: Compute the tangent stiffness matrix for the Timoshenko beam
element in Problem 14.16.

Solution: The tangent matrix coefficients are defined by (see Problem 14.15)

Tαβ
ij = Kαβ

ij +
3X

γ=1

nX
k=1

∂

∂∆β
j

¡
Kαγ
ik

¢
∆γ
k (a)

In particular, we have

T 11ij = K
11
ij + 0

PROPRIETARY MATERIAL. c°The McGraw-Hill Companies, Inc. All rights reserved.



416 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

T 12ij = K
12
ij +

1

2

Z xb

xa
Axx

dw0
dx

dψ
(1)
i

dx

dψ
(2)
j

dx
dx = 2K12

ij

T 13ij = K
13
ij = 0

T 21ij = K
21
ij + 0 = K

21
ij

T 22ij = K
22
ij +

Z xb

xa
Axx

"
du0
dx

+

µ
dw0
dx

¶2# dψ(2)i
dx

dψ
(2)
j

dx
dx

T 23ij = K
23
ij + 0 = K

23
ij

T 31ij = K
31
ij + 0 = K

31
ij

T 32ij = K
32
ij + 0 = K

32
ij

T 33ij = K
33
ij + 0 = K

33
ij (b)

where the direct stiffness coefficients Kαβ
ij are defined by Eq. (`) of Problem 14.16.

Problem 14.18: (Natural convection in flow between heated vertical plates) Consider
the flow of a viscous incompressible fluid in the presence of a temperature gradient
between two stationary long vertical plates. Assuming zero pressure gradient between
the plates, we can write vx = vx(y), vy = 0, T = T (y), and

0 = ρβg(T − Tm) + µ
d2vx
dy2

, 0 = k
d2T

dy2
+ µ

µ
dvx
dy

¶2
where Tm =

1
2(T0+T1) is the mean temperature of the two plates, g the gravitational

acceleration, ρ the density, β the coefficient of thermal expansion, µ the viscosity,
and k the thermal conductivity of the fluid. Give a finite element formulation of the
equations and discuss the solution strategy for the computational scheme.

Solution: The finite element model is given by

Kvvy −GT = F1, KTT = F2 (a, b)

where

Kv
ij =

Z yb

ya
µ
dψi
dy

dψj
dy

dy, KT
ij =

Z yb

ya
k
dψi
dy

dψj
dy

dy, Gij =

Z yb

ya
ρgβψiψjdy

F 1i = −
Z yb

ya
ρβgψi dy + Pi, P1 = −µ

µ
dvx
dy

¶
ya

, P2 = µ

µ
dvx
dy

¶
yb

(c)

F 2i =

Z yb

ya
µ

µ
dvx
dy

¶2
ψidy +Qi, Q1 = −k

µ
dT

dy

¶
ya

, Q2 = k

µ
dT

dy

¶
yb

Solution strategy: Solve the assembled equations corresponding to Eq. (b) for T ,
subject to boundary conditions and initial values of vx = 0. Use the temperatures
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)1,1,1( −

1

2 3

4

5

6 7

8
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thus obtained in the assembled equations associated with Eq. (a) and solve for vx.
Then resolve Eq. (b) with the updated F 2i (because of the newly computed vx).
Iterate the procedure until vx and T obtained in two consecutive iterations differ by,
say, one percent.

Problem 14.19: Derive the interpolation functions ψ1, ψ5, and ψ8 for the eight-node
prism element using the alternative procedure described in Section 8.2 for rectangular
elements.

Solution: This is straightforward. Since ψ1(ξ, η, ζ) must vanish on the faces ξ = 1,
η = 1 and ζ = 1, it is of the form (see Fig. 14.3.2)

ψ1 = c1(1− ξ)(1− η)(1− ζ), ψ1(−1,−1,−1) = 1 → c1 =
1

8

Similarly, we obtain

ψ1 =
1

8
(1− ξ)(1− η)(1− ζ)

ψ5 =
1

8
(1− ξ)(1− η)(1 + ζ)

ψ8 =
1

8
(1− ξ)(1 + η)(1 + ζ)

Problem 14.20: Evaluate the source vector components fei and coefficients K
e
ij over

a master prism element when f is a constant, f0, and k1 = k2 = k3 = constant in
(14.3.5b).

Solution: For a cube of sides a× b× c, the coordinate transformation become

x =
a

2
(1 + ξ), y =

b

2
(1 + η), x =

c

2
(1 + ζ)
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and the Jacobian matrix and its inverse are

J =

⎡⎢⎢⎣
∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

⎤⎥⎥⎦ =
⎡⎣ a
2 0 0

0 b
2 0

0 0 c
2

⎤⎦ , J−1 =
⎡⎣ 2
a 0 0

0 2
b 0

0 0 2
c

⎤⎦

Then the derivatives of the interpolation functions with respect to the global
coordinates can be expressed in terms of the interpolation functions with respect
to the natural coordinates as

⎧⎪⎪⎨⎪⎪⎩
∂ψei
∂x
∂ψei
∂y
∂ψei
∂z

⎫⎪⎪⎬⎪⎪⎭ = J−1
⎧⎪⎪⎨⎪⎪⎩

∂ψei
∂ξ
∂ψei
∂η
∂ψei
∂ζ

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩
2
a
∂ψei
∂ξ

2
b
∂ψei
∂η

2
c
∂ψei
∂ζ

⎫⎪⎪⎬⎪⎪⎭
Hence, the coefficients Ke

ij can be expressed as

Ke
ij =

Z a

0

Z b

0

Z c

0

Ã
kx

∂ψei
∂x

∂ψej
∂x

+ ky
∂ψei
∂y

∂ψej
∂y

+ kz
∂ψei
∂z

∂ψej
∂z

!
dx

= kxS
11
ij + kyS

22
ij + kzS

33
ij

where Sαβij are defined as

S11ij =

Z a

0

Z b

0

Z c

0

∂ψei
∂x

∂ψej
∂x

dx dy dz

S22ij =

Z a

0

Z b

0

Z c

0

∂ψei
∂y

∂ψej
∂y

dx dy dz

S33ij =

Z a

0

Z b

0

Z c

0

∂ψei
∂z

∂ψej
∂z

dx dy dz

The matrices Sαβij can now be evaluated using the Gauss quadrature:

S11ij =

Z a

0

Z b

0

Z c

0

∂ψei
∂x

∂ψej
∂x

dxdy dz =
bc

2a

Z 1

−1

Z 1

−1

Z 1

−1

∂ψei
∂ξ

∂ψej
∂ξ

dξ dη dζ

S22ij =

Z a

0

Z b

0

Z c

0

∂ψei
∂y

∂ψej
∂y

dx dy dz =
ac

2b

Z 1

−1

Z 1

−1

Z 1

−1

∂ψei
∂η

∂ψej
∂η

dξ dη dζ

S33ij =

Z a

0

Z b

0

Z c

0

∂ψei
∂z

∂ψej
∂z

dx dy dz =
ab

2c

Z 1

−1

Z 1

−1

Z 1

−1

∂ψei
∂ζ

∂ψej
∂ζ

dξ dη dζ
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The coefficients Sαβij can be evaluated using the interpolation functions listed in Eq.
(14.3.31)

S11 =
bc

36a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −4 −2 2 2 −2 −1 1
−4 4 2 −2 −2 2 1 −1
−2 2 4 −4 −1 1 2 −2
2 −2 −4 4 1 −1 −2 2
2 −2 −1 1 4 −4 −2 2
−2 2 1 −1 −4 4 2 −2
−1 1 2 −2 −2 2 4 −4
1 −1 −2 2 2 −2 −4 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S22 =
ac

36b

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 2 −2 −4 2 1 −1 −2
2 4 −4 −2 1 2 −2 −1
−2 −4 4 2 −1 −2 2 1
−4 −2 2 4 −2 −1 1 2
2 1 −1 −2 4 2 −2 −4
1 2 −2 −1 2 4 −4 −2
−1 −2 2 1 −2 −4 4 2
−2 −1 1 2 −4 −2 2 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S33 =
ab

36c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 2 1 2 −4 −2 −1 −2
2 4 2 1 −2 −4 −2 −1
1 2 4 2 −1 −2 −4 −2
2 1 2 4 −2 −1 −2 −4
−4 −2 −1 −2 4 2 1 2
−2 −4 −2 −1 2 4 2 1
−1 −2 −4 −2 1 2 4 2
−2 −1 −2 −4 2 1 2 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Similarly, the source vector fe can be computed

Fe =
abc

8

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1
1
1
1
1
1
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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